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Problem 1.
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LCAO = tight-binding
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Problem 2. Huckel molecular orbital  theory.


Apply the ideas of tight binding approximation and calculate the electronic structure of 
benzene. 


1. Construct the ground state wave function out 6 pz orbitals.


2. Including only  nearest-neighbor approximation construct the Hamiltonian in the matrix form 
using a=<i|H|i>  - the onsite energy and b=n-n overlap integral which is gamma in our lecture 
notes).  Assume a=-11.2 eV and b= -0.7eV. 


3. Calculate the energy levels and comment of the observed energy states.


4. Calculate normalized eigenvectors for those eigenstates. Comment on the meaning of “+” 
and “-“ of the individual components of  the eigenvectors.


Problem 3. 


One of the most  important  ferroelectrics is BaTiO3 which has perovskite structure. 
112 Wave Scattering by Crystals

(14.2) ‡ X-ray scattering II
BaTiO3 has a primitive cubic lattice and a basis with

atoms having fractional coordinates

Ba [0,0,0]

Ti [ 12 ,
1
2 ,

1
2 ]

O [ 12 ,
1
2 , 0], [ 12 , 0,

1
2 ], [0, 1

2 ,
1
2 ]

! Sketch the unit cell.
! Show that the X-ray structure factor for the (00l)

Bragg reflections is given by

S(hkl) = fBa + (−1)lfTi +
[
1 + 2(−1)l

]
fO

where fBa is the atomic form factor for Ba, etc.
! Calculate the ratio I(002)/I(001), where I(hkl) is the

intensity of the X-ray diffraction from the (hkl) planes.
You may assume that the atomic form factor is propor-
tional to atomic number (Z), and neglect its dependence
on the scattering vector. (ZBa = 56, ZTi = 22, ZO = 8.)

Fig. 14.2 Unit cell of BaTiO3

The X-ray structure factor is given by

S(hkl) =
∑

d

fde
ik(hkl)·Rd =

∑

d

fde
2πi(hxd+kyd+lzd)

where Rd = (xd, yd, zd) are the positions of atom d in the unit cell, and
fd it the corresponding form factor (which we take to be proportional
to Zd). If we are interested in (00l) we set h = k = 0 and obtain

S(00l) = fBa + (−1)lfTi + [1 + 2(−1)l]fO

The Bragg peak intensity is proportional to the square of the structure
factor (times a multiplicity factor, but the multiplicity for all (00l) are
the same!), thus we obtain

I002
I001

=
(fBa + fTi + 3fO)

2

(fBa− fTi − fO)
2 ≈ 15.4

In reality the form factor depends on the scattering vector, and the
variation is different from each atom, so this is just an approximation.



Problem 4.    

Drude model. 
19

(3.2) Scattering Times
The following table gives electrical resistivities ρ, den-

sities n, and atomic weights w for the metals silver and
lithium:

ρ (Ωm) n (g/cm3) w

Ag 1.59× 108 10.5 107.8
Li 9.28× 108 0.53 6.94

! Given that both Ag and Li are monovalent (i.e.,
have one free electron per atom), calculate the Drude
scattering times for electrons in these two metals.

In the kinetic theory of gas, one can estimate the scat-
tering time using the equation

τ =
1

n⟨v⟩σ

where n is the gas density, ⟨v⟩ is the average velocity (see
Eq. 3.4 main text), and σ is the cross-section of the gas
molecule—which is roughly πd2 with d the molecule di-
ameter. For a nitrogen molecule at room temperature,
we can use d = .37nm.

! Calculate the scattering time for nitrogen gas at
room temperature and compare your result to the Drude
scattering times for electrons in Ag and Li metals.

Note: the table should read 10−8 not 108 !
We use σ = ρ−1 = Ne2τ/m with m the free electron mass and where

N here is the electron density which we calculate by

N = n
Avagadro Number

mol-weight in grams/cm310
6

Solving for τ we get

τAg = 3.8× 10−14sec

τLi = 8.3× 10−15sec

The second part should say room temperature and pressure. The
weight of a Nitrogen molecule is about 28 times that of a proton (two
nitrogen atoms of atomic weight 14). So the velocity at 300 K is

⟨v⟩ =

√
8kBT

π28mp
≈ 475m/sec

uncoincidentally being close to the speed of sound in air. The density
is given by n = P/RT with R the gas constant. At P = 105 pascals
and T = 300 K, this gives .025 mol/m3. (This should be the usual 22.4
moles per liter that people remember, but we used 300 K instead of 273
and we approximated the pressure). Multiplying by Avagadro’s number
give the density that we should use in the equation

τ =
1

n⟨v⟩σ
≈ 2× 10−10sec

So electrons scatter much much much more often — this is not surprising
considering how much higher their density is than that of the nitrogen
gas.
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and

⟨v⟩ =
√

8 kBT

πm .
(3.4)

Assuming this all holds true for electrons, we obtain

κ =
4

π

nτk2BT

m .

While this quantity still has the unknown parameter τ in it, it is the same
quantity that occurs in the electrical conductivity (Eq. 3.2). Thus we
may look at the ratio of thermal conductivity to electrical conductivity,
known as the Lorenz number10,11

10This is named after Ludvig Lorenz,
not Hendrik Lorentz who is famous for
the Lorentz force and Lorentz contrac-
tion. However, just to confuse matters,
the two of them worked on similar top-
ics and there is even a Lorentz–Lorenz
equation

11The dimensions here might look a
bit funny, but κ, the thermal con-
ductivity, is measured in Watt/K
and σ is measured in 1/Ohm. To
see that WattOhm/K2 is the same
as (kB/e)2 note that kB is J/K
and e is Coulomb (C). So we need
to show that (J/C)2 is WattOhm
(J/C)2 = (J/sec)(J/C)(1/(C/sec) =
WattVolt/Amp = WattOhm.

L =
κ

Tσ
=

4

π

(
kB
e

)2

≈ 0 .94× 10 −8 WattOhm/K2
.

A slightly different prediction is obtained by realizing that we have used
⟨v⟩2 in our calculation, whereas perhaps we might have instead used ⟨v2⟩
which would have then given us12 12In kinetic theory cvT = 1

2m⟨v
2⟩.

L =
κ

Tσ
=

3

2

(
kB
e

)2

≈ 1.11× 10 −8 WattOhm/K2
.

This result was viewed as a huge success, being that it was known for
almost half a century that almost all metals have roughly the same
value of this ratio—a fact known as the Wiedemann–Franz law. In
fact the value predicted for this ratio is fairly close to that measured
experimentally (see Table 3.2). The result appears to be off by about a
factor of 2, but still that is very good, considering that before Drude no
one had any idea why this ratio should be a constant at all!

Table 3.2 Lorenz numbers κ/(Tσ)
for various metals in units of
10−8 WattOhm/K2

Material L

Lithium (Li) 2.22
Sodium (Na) 2.12
Copper (Cu) 2.20
Iron (Fe) 2.61
Bismuth (Bi) 3.53
Magnesium (Mg) 2.14

The prediction of Drude theory is that
the Lorentz number should be on the
order of 1× 10−8 WattOhm/K2.

In retrospect we now realize that this calculation is completely incor-
rect (despite its successful result). The reason we know there is a prob-
lem is because we do not actually measure a specific heat of cv = 3

2kB
per electron in metals (for certain systems where the density of electrons
is very low, we do in fact measure this much specific heat, but not in
metals). In fact, in most metals we measure only a vibrational (Debye)
specific heat, plus a very small term linear in T at low temperatures (see
Fig. 2.5). So why does this calculation give such a good result? It turns
out (and we will see in Chapter 4) that we have made two mistakes that
roughly cancel each other. We have used a specific heat that is way too
large, but we have also used a velocity that is way too small. We will see
later that both of these mistakes are due to Fermi statistics of the elec-
tron (which we have so far ignored) and the Pauli exclusion principle.

We can see the problem much more clearly in some other quantities.
The so-called Peltier effect is the fact that running electrical current
through a material also transports heat. The Peltier coefficient Π is
defined by

jq = Π j

where jq is the heat current density, and j is the electrical current density.


