Introductory discussion.

Phys 502 - 2019
There are some important difficult questions:

1. Why atoms would condense?
2. What happens to the elementary particle when they are inside a digital lattice?
3. What kind of new excitations are possible?
4. Are there any kind of new defects in the digital space?

5. Why metallic Fermi surface stable?

Hint: The modern notion is that physics of electrons in solids is not very different from the low-energy regime in particle physics read G. Volovik, “The universe in the drop,” Oxford U. press.
Symmetries

- Systems described by H or \mathcal{L}
- Symmetry is a transformation which leaves H invariant

 e.g. $r \to -r$, plane reflections

 $t \to -t$ in non-magnetic

Landau idea: a specific new phase must break a certain symmetry.

 e.g. Liquid \to Solid

 PM \to FM or AFM

 FM breaks spin rotation
 time reversal

 AFM in addition breaks

 translational symmetry
 between 2 sublattices

The pattern of symmetry is characterized by the "order parameter"
Order parameter is some physical quantity which transforms differently under some symmetry operation from a Hamiltonian. In simple words it is something which is \(\langle OP \rangle \neq 0 \) in a new phase.

e.g. FM: \(\langle M \rangle \rightarrow -\langle M \rangle \)

if \(t \rightarrow -t \)

but \(H \rightarrow H \)

\(t \rightarrow -t \)

condensed xtal: OP is the Fourier transformed atomic density \(\mathbf{q} \)-space

\[
\frac{2\pi}{d} \text{ between atoms}
\]

but nothing like this for liquids
e.g. super fluid
also to superconductors but charge-neutral
characterized by a complex order parameter
as in Math!
which is a phase of the global wave function
Superfluid breaks this OP which corresponds
to the particle number conservation
more on that in Lecture 2
on Landau-Ginzburg theory.

Is there anything beyond symmetry?
Welcome to the 21st century!
e.g. FQHE no symmetry is broken.

 Band Metal \leftrightarrow Insulator
both have the same symmetry!
or e.g. in strongly correlated materials
metal \leftrightarrow insulator transition

We need a new idea which is
not connected to the OP broken phase.
Here is a very simplified view.
You will learn soon that
the difference
- in insulator all bands are filled and separated by a large gap from the empty bands (states)
- in metals at least one band is partially filled
 \[\downarrow \]
 at least 1 Fermi surface

So we have a topological invariant
 \[\Rightarrow \] the number of Fermi surface sheets

This number is unaffected by the smooth deformation of the F.S.
Otherwise if this number changes
the system undergoes a quantum phase transition (Lifshitz transition)
In short, many gaped materials may have non-trivial topological properties characterized by a topological order parameter.

\[\text{e.g.} \quad \Phi \text{HEs} \]

- Topological insulators
- Weyl semimetals (no gap here!)
- Superconductors

\[\quad \downarrow \text{in SC no spontaneous symmetry breaking} \]

but the ground state degeneracy depends on the topology.

So the topological OP will have to be a measure of topology and entropy.

The end.