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Problem 6: One-Dimensional TTF-TCNQ Compounds4

Some organic compounds like TTF-TCNQ are made up of weakly coupled chains.
In TTF-TCNQ, tetrathiafulvalene (TTF) and tetracyanoquinodimethane (TCNQ)
chains are weakly bound. This gives these compounds a 1D aspect. The aim in
this problem is to study some characteristic features of these 1D compounds.

6.1: Isolated Chains

In a very simple approximation, we shall describe these compounds as single chains
of N identical molecules, each the same distance a from the next, as shown in
Fig. P6.1. Let R! be the coordinate of the ! th molecule, so R! = !a. We assume
the usual periodic boundary conditions. We calculate the band structure of each
chain in the tight-binding approximation. The quantum states of the electrons in the
last occupied orbital of molecule ! are modelled by a single non-degenerate orbital
state |R!〉 of energy E0 with 〈R!|Rm〉 = δ!m. We assume that the Hamiltonian Ĥ of
one electron in the chain can be written in the form

Ĥ = p2

2m
+

N∑

!=1

V(r−R!) ,

where V(r−R!) is the potential at site !. We only take into account hopping integrals
involving the two nearest neighbours. These are denoted as they were in Chap. 1 by
−t0 and −t1 (with t0 and t1 positive).

1. Recall the general form |Ψk〉 for an eigenstate of this Hamiltonian together with
the associated energy eigenvalue Ek. Sketch the shape of the dispersion curve in
the first Brillouin zone.

2. Sketch the wave functions |R!〉 with s symmetry, together with the potential con-
tributing to the various hopping integrals entering the expression for Ek.

3. Assume that each molecule gives a conduction electron to the band. What can be
deduced about the electrical transport properties of this chain? Find the Fermi
wave vector kF and the Fermi energy EF.

4. Calculate the total electronic energy of the chain. Hint: It simplifies to integrate
over k.

Fig. P6.1 Simple model for
a molecular chain

a

R +1RR −1

4 This problem has been designed with F. Rullier-Albenque.
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6.2: Experimental Observations

The structure of TTF-TCNQ is shown in Fig. P6.2. The TTF and TCNQ molecules
are stacked in the direction b, aligned with the chains. (The parameter b is identified
with a in 6.1 and 6.3). The temperature dependence of the conductivity parallel to
the TTF-TCNQ chains is shown in Fig. P6.3.

1. What can be said about the electrical resistivity of this compound?

Figure P6.4 shows topographical images obtained by scanning tunnelling microscopy
of the surface of a TTF-TCNQ crystal in the plane ab at two different temperatures
(70 and 36 K).

2. On Fig. P6.4a, indicate the primitive cell at the surface. Do you recognise the
material basis of Fig. P6.2?

b

c
a

NC

NC

C

CN

C

CN

TCNQ

S

S
C C

S

S

TTF

Fig. P6.2 Chemical structure of TTF-TCNQ (left) and three dimensional stacking of the molecules
(right)

Fig. P6.3 Temperature de-
pendence of the conductivity
parallel to TTF-TCNQ chains.
From Cohen, M.J., Coleman,
L.B., Garito, A.F., Heeger,
A.J.: Phys. Rev. B 10, 1298
(1974). With the permission
of the American Physical
Society ( c© 1974 APS). http://
link.aps.org/doi/10.1103/Phys
RevB.10.1298 T (K)
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(a) (b)

Fig. P6.4 Topographical images obtained by scanning tunnelling microscopy of the surface of a
TTF-TCNQ crystal in the plane ab at two different temperatures: (a) 70 K and (b) 36 K. Images
courtesy of Wang, Z.Z.: LPN, Marcoussis

3. The structure is radically different at 36 K. How would you characterise it along
the chains? Across the chains?

6.3: Dimerised Chain

Although the experimental situation in Fig. P6.4b is more complicated, we shall use
a simple model of structural deformation to describe changes in electronic proper-
ties. We assume that the chains dimerise at low temperatures, with each molecule
moving a distance ±u as shown in Fig. P6.5.

1. What is the primitive cell for this structure and the size of the first Brillouin zone?

The aim now is to calculate the new band structure of this compound, still using the
tight-binding approximation. The Hamiltonian for an electron in the chain can now
be written

Ĥ = p2

2m
+

N/2∑

!=1

[
V(r−R+

! )+V(r−R−! )
]

.

2. Explain why solutions of the Hamiltonian will have the form

|Ψk〉=
√

2
N

N/2∑

!=1

e2ik!a(ak|R+
! 〉+bk|R−! 〉

)
,

with |ak|2 +|bk|2 = 1.

Fig. P6.5 Dimerisation of the
chain
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In order to find the functions |Ψk〉 and their associated energies Ek, we write down
the eigenvalue equation Ĥ|Ψk〉 = Ek|Ψk〉 for the energies and project onto each of
the states |R+

" 〉 and |R−" 〉 in turn. We still assume that the only nonzero hopping
integrals are those involving nearest neighbours, and use the notation

−t′0 = 〈R+
" |V+

" (r)|R+
" 〉= 〈R−" |V−" (r)|R−" 〉 ,

−t′1 = 〈R+
" |V+

" (r)|R−" 〉= 〈R+
" |V−" (r)|R−" 〉 ,

−t′′1 = 〈R−"−1|V+
" (r)|R+

" 〉= 〈R−"−1|V−"−1(r)|R+
" 〉 ,

where V+
" = V(r−R−" )+∑m%=l V(r−Rm) and similarly for V−" .

3. Show that we obtain a system of two equations in ak and bk, one of which is

ak
(
E0−Ek− t′0

)
+bk

(
− t′1− t′′1e−2ika

)
= 0 ,

and derive an expression for the other.

4. Calculate the two energy eigenvalues E1
k and E2

k in terms of E0, t′0, t′1, and t′′1 .
Sketch the band structure, specifying the values at the center and the edge of the
Brillouin zone. What happens to the band structure when u = 0?

5. Would you say this result is compatible with the observations of Fig. P6.3?

For a more accurate analysis of the temperature dependence of the conductivity σ
of TTF-TCNQ, Fig. P6.6 shows the logarithm of σ as a function of 1/T down to the
lowest temperatures.

6. What can you say about the temperature dependence of the conductivity at the
lowest temperatures?

Fig. P6.6 Temperature de-
pendence of the conductivity
σ of TTF-TCNQ down to the
lowest temperatures. From
Ferraris, J., Cowan, D.O.,
Valatka, N., Jr., Perlstein,
J.H.: J. Am. Chem. Soc. 95,
948 (1973). With permission
of the American Chemical
Society, c© 1973
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6.4: Peierls Transition

In this section the aim is to investigate the stability of the dimerised state at T = 0.
From now on, we consider only the nearest-neighbour contribution to the potentials
V!.

1. For small displacements u compared with a, justify the following approximations:
t′0 ≈ t0, −t′1 ≈−t1−αu, and −t′′1 ≈−t1 +αu with α > 0.

2. Calculate the change in the total electronic energy resulting from dimerisation
and show that the gain in electron energy compared with the situation u = 0 can
be written in the form

#E =−ANu2
(

ln
B
u
− 1

2

)
,

specifying the values of A and B in terms of t1 and α.

It is given that
∫ π/2

0

[
1− (1− z2)sin2 x

]1/2
dx = 1+ 1

2
z2
(

ln
4
|z| −

1
2

)
,

for small z.

3. Assuming that the atoms are coupled harmonically by an elastic force with stiff-
ness constant K, calculate the static deformation energy of the chain as a function
of N, K, and u.

4. Discuss the instability of the ion–electron system with regard to dimerisation of
the chain. Find the static displacement ueq at equilibrium as a function of K, t1,
and α.

In TTF-TCNQ, charge transfer between chains is such that a chain carries 0.50
electrons per molecule rather than 1 as assumed above.

5. Can you explain the structure actually observed in Fig. P6.4b?


