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Magnetic monopoles in spin ice
C. Castelnovo1, R. Moessner1,2 & S. L. Sondhi3

Electrically charged particles, such as the electron, are ubiquitous.
In contrast, no elementary particles with a net magnetic charge
have ever been observed, despite intensive and prolonged searches
(see ref. 1 for example). We pursue an alternative strategy, namely
that of realizing them not as elementary but rather as emergent
particles—that is, as manifestations of the correlations present in
a strongly interacting many-body system. The most prominent
examples of emergent quasiparticles are the ones with fractional
electric charge e/3 in quantum Hall physics2. Here we propose that
magnetic monopoles emerge in a class of exotic magnets known
collectively as spin ice3–5: the dipole moment of the underlying
electronic degrees of freedom fractionalises into monopoles.
This would account for a mysterious phase transition observed
experimentally in spin ice in a magnetic field6,7, which is a
liquid–gas transition of the magnetic monopoles. These monopoles
can also be detected by other means, for example, in an experiment
modelled after the Stanford magnetic monopole search8.

Spin-ice materials are characterized by the presence of magnetic
moments mi residing on the sites i of a pyrochlore lattice (depicted
in Fig. 1). These moments are constrained to point along their respec-
tive local Ising axes êei (the diamond lattice bonds in Fig. 1), and they
can be modelled as Ising spins mi 5 mSîeei , where Si 5 61 and m~ mij j.
For the spin-ice compounds discussed here, Dy2Ti2O7 and Ho2Ti2O7,
(where Dy is dysprosium and Ho is holmium) the magnitude m of the
magnetic moments equals approximately ten Bohr magnetons
(m < 10mB). The thermodynamic properties of these compounds are
known to be described with good accuracy by an energy term that
accounts for the nearest-neighbour exchange and the long-range
dipolar interactions9,10 (for a review of spin ice, see ref. 4):
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The distance between spins is rij, and a < 3.54 Å is the pyrochlore
nearest-neighbour distance. D 5 m0m2/(4pa3) 5 1.41 K is the coup-
ling constant of the dipolar interaction.

Spin ice was identified as a very unusual magnet when it was noted
that it does not order to the lowest temperatures T even though it
appeared to have ferromagnetic interactions3. Indeed, spin ice
was found to have a residual entropy at low T (ref. 5), which
is well-approximated by the Pauling entropy for water ice,
S < SP 5 (1/2)log(3/2) per spin. Pauling’s entropy measures the huge
ground-state degeneracy arising from the so-called ice rules. In the
context of spin ice, its observation implies a macroscopically degen-
erate ground state manifold obeying the ‘ice rule’ that two spins point
into each vertex of the diamond lattice, and two out.

We contend that excitations above this ground-state manifold—
that is, defects that locally violate the ice rule—are magnetic
monopoles with the necessary long-distance properties. From the
perspective of the seemingly local physics of the ice rule, the emergence
of monopoles at first seems rather surprising. We will probe deeper

into how the long-range magnetic interactions contained in equation
(1) give rise to the ice rule in the first place. We then incorporate
insights from recent progress in understanding the entropic physics
of spin ice, and the physics of fractionalization in high dimensions11–15,
of which our monopoles will prove to be a classical instance.

We consider a modest deformation of equation (1), loosely
inspired by Nagle’s work16 on the ‘unit model’ description of water
ice: we replace the interaction energy of the magnetic dipoles living
on pyrochlore sites with the interaction energy of dumbbells consist-
ing of equal and opposite magnetic charges that live at the ends of the
diamond bonds (see Fig. 2). The two ways of assigning charges on
each diamond bond reproduce the two orientations of the original
dipole. Demanding that the dipole moment of the spin be repro-
duced quantitatively fixes the value of the charge at 6m/ad, where
the diamond lattice bond length ad~

ffiffiffiffiffiffiffi
3=2

p
a.

The energy of a configuration of dipoles is computed as the pair-
wise interaction energy of magnetic charges, given by the magnetic
Coulomb law:
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Figure 1 | The pyrochlore and diamond lattices. The magnetic moments in
spin ice reside on the sites of the pyrochlore lattice, which consists of corner-
sharing tetrahedra. These are at the same time the midpoints of the bonds of
the diamond lattice (black) formed by the centres of the tetrahedra. The ratio
of the lattice constant of the diamond and pyrochlore lattices is
ad=a~

ffiffiffiffiffiffiffiffi
3=2

p
. The Ising axes are the local [111] directions, which point along

the respective diamond lattice bonds.
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where Qa denotes the total magnetic charge at site a in the diamond
lattice, and rab is the distance between two sites. The finite ‘self-
energy’ u0/2 is required to reproduce the net nearest-neighbour inter-
action correctly. Equation (2)—which is derived in detail in the
Supplementary Information—is equivalent to the dipolar energy
equation (1), up to corrections that are small everywhere, and vanish
with distance at least as fast as 1/r5.

We consider first the ground states of the system. The total energy
is minimized if each diamond lattice site is net neutral, that is, we
must orient the dumbbells so that Qa 5 0 on each site. But this is just
the above-mentioned ice rule, as illustrated in Fig. 2. Thus, one of the
most remarkable features of spin ice follows directly from the dumb-
bell model: the measured low-T entropy agrees with the Pauling
entropy (which follows from the short-distance ice rules), even
though the dipolar interactions are long-range.

We now turn to the excited states. Naively, the most elementary
excitation involves inverting a single dipole / dumbbell to generate a

local net dipole moment 2m. However, this is misleading in a crucial
sense. The inverted dumbbell in fact corresponds to two adjacent
sites with net magnetic charge Qa 5 6qm 5 62m/ad—a nearest-
neighbour monopole–antimonopole pair. As shown in Fig. 2e, the
monopoles can be separated from one another without further viola-
tions of local neutrality by flipping a chain of adjacent dumbbells. A
pair of monopoles separated by a distance r experiences a Coulombic
interaction, {m0q2

m

�
4prð Þ, mediated by monopolar magnetic fields,

see Fig. 3.
This interaction is indeed magnetic, hence the presence of the

vacuum permeability m0, and not 1/e0, the inverse of the vacuum
permittivity. It takes only a finite energy to separate the monopoles
to infinity (that is, they are deconfined), and so they are the true
elementary excitations of the system: the local dipolar excitation
fractionalizes.

By taking the pictures from the dumbbell representation seriously,
we may be thought somehow to be introducing monopoles where
there were none to begin with. In general, it is of course well known
that a string of dipoles arranged head to tail realizes a monopole–
antimonopole pair at its ends17. However, to obtain deconfined
monopoles, it is essential that the cost of creating such a string of
dipoles remain bounded as its length grows, that is, the relevant string
tension should vanish. This is evidently not true in a vacuum (such as
that of the Universe) where the growth of the string can only come at
the cost of creating additional dipoles. Magnetic materials, which
come equipped with vacua (ground states) filled with magnetic
dipoles, are more promising. However, even here a dipole string is
not always a natural excitation, and when it is—for example, in an
ordered ferromagnet – a string of inverted dipoles is accompanied
by costly domain walls along its length (except, as usual, for one-
dimensional systems18), causing the incipient monopoles to remain
confined.

The unusual properties of spin ice arise from its exotic ground
states. The ice rule can be viewed as requiring that two dipole strings
enter and exit each site of the diamond lattice. In a typical spin-ice
ground state, there is a ‘soup’ of such strings: many dipole strings
of arbitrary size and shape can be identified that connect a given pair
of sites. Inverting the dipoles along any one such string creates a
monopole–antimonopole pair on the sites at its ends. The associated
energy cost does not diverge with the length of the string, unlike in
the case of an ordered ferromagnet, because no domain walls are
created along the string, and the monopoles are thus deconfined.

We did not make reference to the Dirac condition19 that the fun-
damental electric charge e and any magnetic charge q must exhibit the
relationship eq 5 nh/m0 whence any monopoles in our universe must
be quantized in units of qD 5 h/m0e. This follows from the monopole
being attached to a Dirac string, which has to be unobservable17. By
contrast, the string soup characteristic of spin ice at low temperature
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Figure 2 | Mapping from dipoles to dumbbells. The dumbbell picture
(c, d) is obtained by replacing each spin in a and b by a pair of opposite
magnetic charges placed on the adjacent sites of the diamond lattice. In the
left panels (a, c), two neighbouring tetrahedra obey the ice rule, with two
spins pointing in and two out, giving zero net charge on each site. In the right
panels (b, d), inverting the shared spin generates a pair of magnetic
monopoles (diamond sites with net magnetic charge). This configuration
has a higher net magnetic moment and it is favoured by an applied magnetic
field oriented upward (corresponding to a [111] direction). e, A pair of
separated monopoles (large red and blue spheres). A chain of inverted
dipoles (‘Dirac string’) between them is highlighted in white, and the
magnetic field lines are sketched.
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Figure 3 | Monopole interaction. Comparison of the magnetic Coulomb
energy {m0q2

m

�
4prð Þ (equation (2); solid line) with a direct numerical

evaluation of the monopole interaction energy in dipolar spin ice (equation
(1); open circles), for a given spin-ice configuration (Fig. 2e), as a function of
monopole separation.
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makes the strings energetically unimportant, although they are
observable and are therefore not quantized.

Indeed, the monopoles in spin ice have a magnitude qm 5

2m/ad 5 2(m/mB)(alC/2pad)qD < qD/8,000, where lC is the Compton
wavelength for an electron, and a is the fine-structure constant. The
charge of a monopole in spin ice can even be tuned continuously by
applying pressure, because this changes the value of m/ad.

The monopoles are sources and sinks of the magnetic field H, as is
appropriate to the condensed matter setting. More precisely, as in
other instances of fractionalization20, we can define a ‘smeared’ mag-
netic charge rm Rð Þ~

Ð
d3r0 exp { r0{Rj j2

�
j2

� �
+:H, where = ? H is

the divergence of the magnetic field. For a monopole at the origin,
separated by L? j? a from any other monopoles, this gives
rm(0) 5 6qm. The form of the magnetic induction B is also mono-
polar, but with the important difference that a compensating flux
travels along the (unquantized) ‘Dirac string’ of flipped dipoles
created along with the monopole (see Fig. 2).

Our magnetic monopoles would in principle show up in one of the
best-known monopole searches, the Stanford experiment to detect
fundamental magnetic monopoles from cosmic radiation. This
experiment is based on the fact that a long-lived current is induced
in a superconducting ring when a monopole passes through it8. We
can easily check that the presence of the Dirac string of flipped dipoles
is immaterial to the establishment of a current.

The above observations are the central qualitative results of our
work: ice-rule-violating defects are deconfined monopoles of H,
they exhibit a genuine magnetic Coulomb interaction (see equation
(2)), and they produce Faraday electromotive forces in the same way
as elementary monopoles would.

We re-emphasize that the ice rule alone does not permit a consist-
ent treatment of the excited states of the physical problem: crucially,
the energetic interaction between our defects is absent altogether.
Also, in previous discussions of the purely ice-rule problem and
related short-range problems11–13 it has been noted that the defects
do acquire a purely entropic Coulomb (that is, 1/r) interaction,
which has a strength that vanishes proportionally to T at low tem-
peratures. This interaction will be present in addition to the magnetic
Coulomb interaction discussed in this paper, and is clearly much
smaller as T R 0. Also, it will not be accompanied by a magnetic
field, it will not renormalize the monopole charge, and it will not
be felt by a stationary magnetic test particle that is embedded in the
lattice but is not attached to a lattice site.

The most satisfactory way to demonstrate the presence of a mono-
pole would be to measure the force on magnetic test particles, say by a
Rutherford scattering experiment or by clever nanotechnological
means. Unfortunately, given the lack of elementary magnetic mono-
poles, we would have to use dipoles as test particles, which signifi-
cantly weakens such signatures.

An alternative strategy is to look for consequences of the presence
of magnetic monopoles in the collective behaviour of spin ice. This is
most elegantly achieved by applying a magnetic field in the [111]
crystallographic direction. Such a field acts as a (staggered) chemical
potential (see Fig. 2), favouring the creation of monopoles of a given
sign on either sublattice of the diamond lattice.

We thus have a tuneable lattice gas of magnetic monopoles on the
diamond lattice. The basic structure of the phase diagram as a func-
tion of magnetic field and temperature can be inferred from work by
Fisher and collaborators21 in the context of ionic lattice gases and
Coulombic criticality. At high T, there is no phase transition but a
continuous crossover between the high- and low-density phases as
the chemical potential is varied. At low T, a first-order phase trans-
ition separates the two regimes. This transition terminates in a critical
point at (hc, Tc), not unlike the liquid–gas transition of water. This
serves as a useful diagnostic, because the liquid–gas transition is
absent for a nearest-neighbour spin-ice model, in which defects inter-
act only entropically. In that case, it is known that there cannot be a
first-order transition in the limit of low T (ref. 22).

To confirm this scenario, we have demonstrated by Monte Carlo
simulations that the actual phase diagram of dipolar spin-ice model
has precisely this structure. To rule out the appearance of the liquid–
gas transition being due to effects introduced by the approximations
leading to equation (2), we simulated directly the original dipolar
spin-ice model, equation (1). The resulting phase diagram is depicted
in Fig. 4. The critical endpoint is located around (Tc, hc) 5

(0.57 6 0.06 K, 0.86 6 0.03 T). The error bars are mainly due to
finite-size effects, as the intensive nature of the simulations of long-
range dipolar interactions prohibits simulating very large systems.

This scenario is indeed observed experimentally in spin-ice mate-
rials6,7, and our results provide a natural explanation. Spin ice in a
[111] magnetic field is a problem that has already attracted consi-
derable attention. The low-density phase of monopoles is known as
kagome ice, a quasi-two-dimensional phase with algebraic correla-
tions and a reduced residual entropy6,7,23. The high-density phase is
an ordered state with maximal polarization along the field direction.
Experimental results on the liquid–gas transition and its endpoint are
also displayed in Fig. 4 for comparison. Our numerical results are in
good qualitative agreement with both experiment and the analytic
calculations of ref. 21. Our value of the critical field agrees with ref. 6
to within a few per cent, which is less than the uncertainty due
to demagnetization effects6,7. However, the experimental value of
Tc is about a third lower than the numerical one, most probably
due to farther-neighbour (exchange) interaction terms, which—
although small—can shift the location of a transition temperature
considerably10.

The presence of a liquid–gas transition was noted to be very
remarkable because there are few, if any, other experimentally known
instances in localized spin systems6. No mechanism was known to
account for this phenomenon, and our theory of magnetic mono-
poles fills this gap.

The existence of magnetic monopoles in a condensed matter sys-
tem is exciting in itself. (The monopoles appearing in the interesting
work on the anomalous Hall effect are not excitations and do not
involve the physical magnetic field24.) Moreover, these monopoles
are a rare instance of high-dimensional fractionalization, of interest
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Figure 4 | Phase diagram of spin ice in a [111] field. The location of the
monopole liquid–gas transition from numerics (blue line) compared to
experiment (black line; ref. 6). The solid lines are first-order transitions
terminated by critical endpoints (filled circles). The dashed lines are
crossovers. The inset shows magnetization curves showing the onset of first-
order behaviour as the temperature is lowered. Our simulations cover the
range 0.335 K , T , 0.8 K for 1,024 spins. At the lowest temperatures, the
parallel tempering code we use in our simulations of the Ewald-summed
dipolar interaction no longer completely suppresses the hysteresis, and we
have extended the first-order transition line using Clausius–Clapeyron.
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in fields as diverse as correlated electrons and topological quantum
computing25. We hope our analysis will encourage experiments
aimed at directly detecting these monopoles. There are many avenues
to explore in search of useful signatures, among them scattering,
transport and noise measurements, and flux detection.
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