
HW 2 - PHONONS,   DUE  WED 17th, 5pm 

Solve these problems from Simon’s The Oxford Solid State Basics
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Defining x = (ω/2)
√
m/κ we obtain

A =
!2

12πk2B

8κ

m

∫ 1

0
dx

x2

√
1− x2

The integral is evaluated to give π/4 (make the substitution x = sin θ).
Thus we obtain

A =
!2

6k2B

κ

m

as required.

(9.3) More Vibrations
Consider a one-dimensional spring and mass model of

a crystal. Generalize this model to include springs not
only between neighbors but also between second nearest
neighbors. Let the spring constant between neighbors be

called κ1 and the spring constant between second neigh-
bors be called κ2. Let the mass of each atom be m.

(a) Calculate the dispersion curve ω(k) for this model.
(b) Determine the sound wave velocity. Show the group

velocity vanishes at the Brillouin zone boundary.

(a) Use the same approach

mẍn = κ1(xn+1 − xn) + κ1(xn−1 − xn) + κ2(xn+2 − xn) + κ1(xn−2 − xn)

= κ1(xn+1 + xn−1 − 2xn) + κ2(xn+2 + xn−2 − 2xn)

Using the same ansatz
xn = Aeiωt−ikna

we obtain

−mω2 = 2κ1(cos(ka)− 1) + 2κ2(cos(2ka)− 1) (9.3)

so

ω =

√
2κ1
m

(cos(ka)− 1) +
2κ2
m

(cos(2ka)− 1)

(b) To obtain the sound velocity, expand for small k to obtain

ω =

√
2κ1
m

(ka)2

2
+

2κ2
m

(2ka)2

2
=

(

a

√
κ1 + 4κ2

m

)

k

Thus the sound velocity is

vs = a

√
κ1 + 4κ2

m

The easiest way to examine ∂ω/∂k at the zone boundary is to differ-
entiate Eq. 9.3 to given

mω∂ω/∂k = −2aκ1 sin(ka)− 4aκ2 sin(2ka)

At the zone boundary k = π/2 both terms on the right hand side are
zero, hence we have zero group velocity.

Vibrations of a
One-Dimensional Diatomic
Chain 10

(10.1) Normal modes of a One-Dimensional Di-
atomic Chain

(a) What is the difference between an acoustic mode
and an optical mode.

! Describe how particles move in each case.
(b) Derive the dispersion relation for the longitudi-

nal oscillations of a one-dimensional diatomic mass-and-
spring crystal where the unit cell is of length a and each
unit cell contains one atom of mass m1 and one atom of
mass m2 connected together by springs with spring con-
stant κ, as shown in the figure (all springs are the same,
and motion of particles is in one dimension only).

a

m1
m2

κ κ

(c) Determine the frequencies of the acoustic and op-
tical modes at k = 0 as well as at the Brillouin zone
boundary.

! Describe the motion of the masses in each case (see
margin note 4 of this chapter!).

! Determine the sound velocity and show that the
group velocity is zero at the zone boundary.

! Show that the sound velocity is also given by vs =√
β−1/ρ where ρ is the chain density and β is the com-

pressibility.
(d) Sketch the dispersion in both reduced and extended

zone scheme.
! If there are N unit cells, how many different normal

modes are there?
! How many branches of excitations are there? I.e.,

in reduced zone scheme, how many modes are there there
at each k?

(e) What happens when m1 = m2 ?

The following figure depicts a long wavelength acoustic wave: All
atoms in the unit cell move in-phase with a slow spatial modulation.
Acoustic waves ω ∼ k for small k.

a

m1 m2

κ κ
acoustic
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such that the spectrum can be written as

Enrel,ncm = !ωrel(nrel +
1

2
) + !ωcm(ncm +

1

2
)

At temperature T , the expectation of the energy of this system will
correspondingly be

⟨E⟩ = !ωrel(nB(β!ωrel) + 1/2) + !ωcm(nB(β!ωcm) + 1/2)

where nB(x) = 1/(ex − 1) is the usual Bose factor.
The purpose of this exercise is not just to do another quantum me-

chanics problem. It is here to point out that coupled deg rees of freedom
act just like a single simple harmonic oscillator once the degrees of free-
dom are “rediagonalized”. This is important motivation for treating
phonons (coupled modes of springs) as individual harmonic oscillators.

(9.2) Normal Modes of a One-Dimensional
Monatomic Chain

(a)‡ Explain what is meant by “normal mode” and by
“phonon”.

! Explain briefly why phonons obey Bose statistics.
(b)‡ Derive the dispersion relation for the longitudinal

oscillations of a one-dimensional mass-and-spring crystal
with N identical atoms of mass m, lattice spacing a, and
spring constant κ (motion of the masses is restricted to
be in one dimension).

(c)‡ Show that the mode with wavevector k has the
same pattern of mass displacements as the mode with
wavevector k + 2π/a. Hence show that the dispersion
relation is periodic in reciprocal space (k-space).

! How many different normal modes are there.
(d)‡ Derive the phase and group velocities and sketch

them as a function of k.
! What is the sound velocity?
! Show that the sound velocity is also given by vs =

1/
√
βρ where ρ is the chain density and β is the com-

pressibility.
(e) Find the expression for g(ω), the density of states

of modes per angular frequency.
! Sketch g(ω).
(f) Write an expression for the heat capacity of this

one-dimensional chain. You will inevitably have an inte-
gral that you cannot do analytically.

(g)* However, you can expand exponentials for high
temperature to obtain a high-temperature approxima-
tion. It should be obvious that the high-temperature
limit should give heat capacity C/N = kB (the law of
Dulong–Petit in one dimension). By expanding to next
non-trivial order, show that

C/N = kB(1−A/T 2 + . . .)

where

A =
!
2κ

6mk2
B .

(a) A normal mode is a periodic collective motion where all particles
move at the same frequency. A phonon is a quantum of vibration.
[I do not like the definition ”a quantum of vibrational energy”. The

vibration does carry energy, but it carries momentum as well, so why
specify energy only?]
Each classical normal mode of vibration corresponds to a quantum

mode of vibration which can be excited multiple times. A single mode
may be occupied by a single phonon, or it may be occupied with mul-
tiple phonons corresponding to a larger amplitude oscillation. The fact



If you  feel strong  and theory inclined,  Instead of  solving 9.3 problems you  can try instead 
this problem.
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68 Vibrations of a One-Dimensional Monatomic Chain

where we have used the orthogonality of s and taken the sum over m to
give a δac.
Thus the given Hamiltonian is equivalent to the original Hamitlonian

H =
∑

a

1

2ma
p2a +

∑

a,b

1

2
xaVa,bxb

The new form of the Hamiltonian in terms of P and Y has each m
coordinate completely decoupled. Further the P and Y satisfy canonical
commutations for momenta and positon so each m is simply a harmonic
oscillator with frequency ωm.
If one wanted to derive the spectrum from the Hamiltonian, one could

follow the usual procedure of writing

a† =
1√
2!

(
P/

√
ω + i

√
ωY
)

to rewrite the Hamiltonian for each decoupled mode as

H = !ω(a†a+ 1/2)

(9.8) Phonons in 2d* Consider a mass and spring model of a two-dimensional
triangular lattice as shown in the figure (assume the lat-
tice is extended infinitely in all directions). Assume that
identical masses m are attached to each of their six neigh-
bors by equal springs of equal length and spring con-
stant κ. Calculate the dispersion curve ω(k). The two-
dimensional structure is more difficult to handle than the
one-dimensional examples given in this chapter. In Chap-
ters 12 and 13 we study crystals in two and three dimen-
sions, and it might be useful to read those chapters first
and then return to try this exercise again.

Ok, this one is pretty hard if you have never seen such a thing before.
Probably it should have two stars.
First of all, one assumes that the crystal starts in equilibrium with

the springs unstretched. Forces on the springs will be proportional to
the amount of stretching. Note however, that if one of the masses is
displaced in a direction perpendicular to one of its attaching springs, to
linear order, the spring is not stretched at all (it is only rotated)! So in
other words, we need only keep track of the stretching in the direction
parallel to the spring.
Let us let the edge have unit length for simplicity of notation. If

we let the position of a sites in equilibrium be called rn and let the
displacements from this equilibrium be called urn . Now let us define


