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Band Structure of Graphite*
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Tight-binding calculations, using a two-dimensional model of the graphite lattice, lead to a point of con-
tact of valence and conduction bands at the corner of the reduced Brillouin zone. A perturbation calculation
which starts, with wave functions of the two-dimensional lattice and is applied to the three-dimensional
lattice is described. Some general features of the structure of the 7r bands in the neighborhood of the zone
edge are obtained and are expressed in terms of appropriate parameters.

I. INTRODUCTION

KVERAL attempts' ' have been made to explain
the electrical and magnetic properties of graphite

by a band structure based on a two-dimensional model
of the lattice. This is reasonable in view of the physical
structure of graphite; a layer lattice in which the separa-
tion of the layers is 3.35 A whereas the separation of
atoms within a layer is 1.42 A. Moreover, the large
anisotropies of the electrical conductivities and mag-
netic susceptibilities in and perpendicular to the basal
planes make the two-dimensional model appear as an
adequate approximation. Tight-binding calculations
with this model lead to a contact of the valence and
conduction bands at the corners of the Brillouin zone;
the bands at the contact points have the form of circular
cones in the space of energy versus wave number. This
structure asserts that graphite behaves as a semi-
conductor with a vanishing energy gap, and in order to
account for the electrical and magnetic properties it is
necessary to invoke impurities or surface electrons. ' A
more telling difhculty is that the model does not allow
for the presence of holes with different eReci, ive masses
from the electrons. ' The nature of the bands in the
three-dimensional lattice is therefore of interest and the
purpose of this paper is to display possible structures of
the bands in the neighborhood of the edges, parallel to
the t."axis of the hexagonal Brillouin zone. The calcula-
tions are made by a perturbation calculation in which
the zero-order wave functions are appropriate to layers
of the lattice at the point of contact in the two-dimen-
sional zone. The group theory of the two-dimensional
lattice and the nature of the contact point are described
in Sec. 2. The wave functions of the three-dimensional
lattice and the appropriate perturbation calculation
are described in Sec. 3 and the results are discussed
in Sec. 4.

K; t, =2s8;, ; i, j=l, 2. (2.1)

The points of contact are at U and U', the corners of
the symmetrical reduced Brillouin zone which is indi-
cated by the dashed lines of Fig. 2. The alternative zone
indicated by solid lines is more convenient since it.
contains U and U' within it.

The calculations of Wallace using tight-binding with
x orbitals show that the contact points of the bands
occur at U and O'. Numerical calculations made by

2. TWO-DIMENSIONAL LATTICE

Although the main purpose of the following calcula-
tions is an investigation of the three-dimensional lat-
tice, we describe here the symmetry properties of the
wave functions of a single layer, since these are used in
the following section. I orner' has presented a complete
group-theoretical treatment of the single-layer lattice
but this can be simplified greatly by a diferent choice
of the location of the origin.

The two-dimensional lattice of carbon atoms is shown
in Fig. 1. A unit cell, indicated by dashed lines, con-
tains two atoms, one of type A and one of type B.The
vectors t» and t2 shown there are primitive translations
(ts= —tt —ts). The length of each of these is a. The
corresponding reciprocal lattice whose vectors are Kr
and K2 is shown in Fig. 2. K, and K& satisfy the
conditions,
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FIG. 1. A layer plane of the graphite lattice. The circles
represent carbon atoms.
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Corbato' show that the energy of the 0- states are well
removed from E', the energy at the points of contacts
of the valence and conduction bands. It is reasonably
certain, then, that the Fermi energy lies in the x bands
and the discussion can be restricted to the symmetry
properties of the m states.

Choosing the center of symmetry to be the origin of
the coordinate axes shown in Fig. 1, permits a fac-
torization of the space group into a point subgroup
and the translation subgroup. The latter requires the
wave function to satisfy the Bloch condition

TABLE I. Plane group, G(U).

Elements,

QQ'
T1, Tmp Ta

Description

identity
rotation about z axis by ~-', 7r

re8ectionsin (z,t,) planes;z=1, 2, 3.

An explicit matrix representation for U3 is

(1 0) /co' 0 ) fu) 0 l
1, Q-'=I

l 0 1) (0 co) (0 (o')
p(k, r—t) =exp( —ik- t)lf'(k, r),

t= ziti+nets',

(2.2)

(2.3)

(0 co'l t'0 a& i) (0 1 )
L(g-' ()) E(o 0) (1 0)

e~ and n2 are integers. A subgroup consisting of the
identity element E and reflections in the plane (x,y),
P, can be factored from the point subgroup. This im-

$$1P2 (2.6)

A knowledge of the transformation properties of the
wave functions belonging to U3, N3~, and N32, at the
point, kU= kp makes it possible to determine the energy
E(k) in the neighborhood of k=kp. The Bloch wave
functions P(k, r) satisfy

v yV(r) —E{k) 1lt'(k, r) =0.
2m

(2.7)

The Bloch function having the wave vector kp+x can
be written as

LTK R NAT I VK

BRILLOUI N

ZONK

f(kp+x, r) =exp(ix. r)g(kp, r), (2.8)

where p(kp, r) obeys the Bloch condition (2.2). On sub-
stituting this into (2.7), one finds

BR I LOU IN

ZONE

F&G. 2. The reciprocal lattice of the two-dimensional model. Two
possible forms of the reduced Brillouin zone are shown. with

~z+~{r)+H'—E(kp+~) 14{kp,r) =0, (2.9)
2m

H'= (A/m) v. p+h'a'/2'. (2.10)
poses the conditions

P,f(k, r) =+/(k, r) (o states),

P,p(k, r) =—1'(k,r) (m states).

(2.4)

(2.5)

There remains only the subgroup of two-dimensional
point group operations in the (x,y) plane. The plane
group, G(U}, of the wave vector ko is giveri in Table I.
The characters of its irreducible representations U, are
listed in Table II.

The branching point energy, E', is fourfold degenerate
as shown by Lomer' and by Carter ' Two of these
states are at the point U and transform according to
U3 and two are at U' and transform isomorphically
to U3.

sc=(—s sinn, ~ cosn, 0), (2.11)

TABLE II. Characters of the "small" representations U; of G(U).

Representation
Class
0

The operator 8' is invariant with respect to lattice
translations and therefore connects only states of the
same k. The problem of determining E(kp+x) is there-
fore reduced to ending the energy change induced on
E(kp) by the perturbation energy H'; the unperturbed
energy EP=E(kp) is doubly degenerate with wave
functions Na~ and N3~.

It is convenient to set

' F. J. Corbato, Ph.D. thesis, Massachusetts Institute of Tech-
nology, 1956 (unpublished).

J. L. Carter, thesis, Cornell University, 1953'(unpublished).

U1
Ug
Us

1—1
0
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with a shown in Fig. 2, and to define the operators p(rr)
by

Then,
p(n) =x.p/z= —p* sinn+p" cosa.

If' = ($/m) KP (&)+its &'/2srs

(2.12)

(2.13)

The operators

1
sr'= (—p*+ip") and sr'= (—p—*+sp") (2.14)

transform under rotations of coordinate axes according
to U3. In terms of these operators,

p(a) = (sr'e' +m'e ' ). (2.15)

The matrix elements of sr (5= 1, 2) can be partially
determined by using the transformation properties of
the wave functions under the operations of the group
elements. One finds

a
(ts„,sr'I, &)

= P-P "D, ,*(R)
h, Z v&S'gr

(0 e')
p(~) = —

poi
EG' 0) (2.17)

where po is a real constant. The reality of po is a conse-

quence of the Hermitian property of p and p&. In addi-
tion to the elements shown in (2.17) there are also others
which connect N3~ with the one-dimensional states.
Although these are not used in the present section they
will be in the following one and are listed here.

p(&)si;it=Pe ',
p(&) ss; it =Pe+',

p(&)si;st=Ye ',
p(~) ss;»= —Ve+'-

(2.18)

Here P and p are constants not determined by the sym-

metry but by the explicit wave functions I;,.
The result of diagonalizing the perturbation H',

(2.13) leads to energy values which are, to first order
ill K)

E(k +os:)=E'—(hpo/srs)z,
(2.»)

Es (kp+s:) =Eo+ (APo/rrs)»

The energy surface is a circular cone to erst order in

~, in E, a, z~ space. This result is independent of any

XsDG e(R) *D;;(R) (u„„.sre'ss„') (2..16)

Here 1's is the number (6) of elements, R, in the group;
'D;., (R) is the (j j) element in the matrix representative
of the group element E. in the ith representation. By
performing the sums shown in (2.16) and using (2.6),
Table II, and (2.15) one finds the submatrix of p(n)
ln Nay and N32 ls

TABLE III. Numerical values of p0/A in A '.

0.25
0.80
0.63
0.72

Source

Wallace'
Lomerb
present authors
McClure'

a See reference 1.
b See reference 0.' See reference 3.

3. THREE-DIMENSIONAL LATTICE

The three-dimensional lattice has a 180' screw axis
perpendicular to the basal plane. Similar layers are

s W. Trzebiatowski, Roczniki Chem. 17, 73 (1937) Lace Chem.
Abstr. 31, 4177 (1936)j."J. Slonczewski, thesis, Rutgers University, 1955 (unpub-
lished). Mic. 56—2314. Microfilm or photostatic copies available
from University Microfilms, Ann Arbor, Michigan, 1956.

"Bouckaert, Smoluchowski, and Wigner, Phys. Rev. 50, 58
(1936).

» R. J. Elliot, Phys. Rev. 96, 280 (1954).

approximations regarding wave functions and is a
result of the symmetry of an isolated graphite layer
with spin-orbit coupling neglected. The tight-binding
calculations agree with (2.19) in the limit of small K.

The parameter po can be determined only with the
use of explicit wave functions. In terms of Wallace's
overlap integral yo, it is

Po= (s)1a(m/h)yo, (2.20)

where a is a lattice parameter, 2.456A.' Coulson„
according to Wallace, estimates yo to be 0.9 ev whereas
Lomer, ' using atomic wave functions in a tight-binding
calculation, estimates it to be 3 ev. The corresponding
values of po are shown in Table III. In the appendix we

estimate po by assuming that I» and Nss can be written
as Bloch sums of hydrogenic orbitals. McClure's' value
was obtained by a comparison of calculated values of
magnetic susceptibility at high temperatures with ex-
periment and so is derived from experiment. Our value
agrees favorably with this.

The algebraic sign of po is of interest for if po ls

negative, the valence band must overlap the conduction
band. "The argument for this is based on the compati-
bility relations of the small representations" and on the
argument that the algebraic sign of at least one of the
four m-band energy differences is given correctly by the
tight-binding method. However, it is to be noticed that
p, is positive.

The eGect of spin-orbit coupling on the energy levels
deserves brief mention. Using the methods described by
Elliot, " it is found that spin-orbit coupling separates
the energies P'. However, this requires an admixture of
atomic states with principal quantum number greater
than two. This fact combined with the small nuclear
charge of carbon causes the splitting to be less than
10 ' ev. The details of this calculation are given in

reference 10.
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stacked with corresponding A and 8 atoms above each
other a distance c apart; these layers are numbered

1, 3, 5 . Half-way between these layers are layers
with A' atoms above A atoms but because of the rota-
tion about the screw axis, the 8' atoms do not lie in
line with the 8 atoms; these layers are numbered

2, 4, 6, . A projection of the lattice onto a single
plane illustrating this structure is shown in Fig. 3. A
unit cell contains one of each of the four types of atoms,.4, A', 8, B'. The lattice translations are

t =nt tr+ vsts+ n4t4,

where e~, n2, e4 are integers. The vector t4 has a magni-
tude c and is directed parallel to the z axis, perpendicular
to the planes.

Two forms of the reduced Brillouin zone are shown
in Fig. 4. Each is a prism derived from the correspond-
ing zone of the two-dimensional lattice. The dashed

SYMMETRICAL

BRILLO U IN

r Ik~
I

BR ILLOUI N

ZONE

yl FTG. 4. Two possible forms of the three-dimensional
reduced Brillouin zone.

o'

/
IBI

/
/

/
X

( 0
(pt/-,' t4) =exp( —ike. t4/2) I

(M 0)

(0
(ps/ ', t4) =e—xp( ike t—4/2) I

(co 0

(3.1)

shown in Fig. 3. The p; used in Table IV is labeled p,
"

by Carter.
An explicit matrix representation of 53 is

(1 0) (co r 0$ (&o 0 )
(e/0)=I I, (&/0)=I I, (&-'/0)=I

(0 1) &0 co) EO a) ')

FIG. 3. A projection of the graphite lattice on a layer plane.
The solid (dashed) lines join the projections of atoms of types A
and 8 (A' and 8') in odd (even) numbered layers.

lines show the usual zone having sixfold symmetry
about the k, axis. If the layers were separated to in-
finity, the states with wave vectors lying on the lines
HH and H'H' would reduce to those having wave
vectors U and U', respectively. It is those states which
lie near the edges HH and H'H' which are of primary
interest and, accordingly, the alternative zone repre-
sented by solid lines is more convenient. A general
point on the edge HH is denoted by S.

A group-theoretical analysis of the three-dimensional
lattice has been carried out by Carter' f and we use his
results to obtain the wave functions. The group of the
wave vectors k„G(S), and its representations are
shown in Table IV. This is abridged in that the transla-
tions are not shown explicitly. The translation t4/2
cannot be factored from G(S). It is to be noticed that
the origin here is at an A atom whereas the center of
symmetry for the layer functions I& and u& is at 0'

f See also, C. Herring, J. Franklin Inst. 233, 525 (1942).

p0 1~
(ps/-', t4) =exp( —ikq t4/2) I I, co=e& '.

0&'

TAsz.E IV. The group G(S) and its small representations.

Operator Definition

~3 &3 '
PI& P2& P3

Repre-
sentation

identity
rotations by ~-', ~ about s axis
reQections in (t4t;) planes; i=1, 2, 3

Group elements
(»/o), (» '/o)

S1
S1
S3

exp( iks t—4/2)
exp( —iks t—4/2)

0

In the three-dimensional lattice there are four atoms
per unit cell, twice as many as in the layer model. Each
layer state must give rise to two three-dimensional
states at each k. Each of the layer s. states, Nst=lt and
Qss Ns give two f's at ke. These f's transform accord-
ing to the representations in Table IV and are labeled



276 J. C. SLONCZEWSKI AN 0 P. R. WE I SS

4'll ip21 $81 and 4'32. Ihey are

0 =b'=2 e""'~"(~/(s+-')t)N

ip00 b=——Q,e"""(0/s t4) N,i,

(3.2)

(3 3)

Poi ———(a—a'), (3.4)

1
4»=—(a+a'), (3.5)

with
a=+,e""*'( /0sto)N0,

""*'+*'( /( + )«)

(3-6)

(3 7)

(b,/0) = (Q/ —t,),
(bo '/0) = (Q '/ti)

(pi/0) LTi/ (t+2t&)j
(Po/0) =

I
&0/-.'(2ti+to) ),

(. /0) =I &/-'. (1t.-t.)lI T./-:(t -t.)3,

and that
&e =-', K,—-', Ko+k, e„

(3.8)

(3 9)

where e, is a unit vector in the s direction. 1he relations
(3.8) arise from the different choices of centers of sym-
metry, that for the layer function and that used by
Carter. They are written explicitly for the odd-num-
bered layers.

The wave functions (3.2) to (3.7) are only approxi-
mate since the layer functions I& and N2 have .x sym-

The notation is chosen to convey the nature of the
ip's. If the function a, for example, were written as a
linear combination of atomic p, orbitals, only those
located on type-A atoms would occur. Analogous
statements apply to a', b, b', and A', 8, 8', respectively.
However, for our purposes it is not necessary to assume
such an expansion. That the wave functions (3.2) to
(3.7) transform properly can be verified readily in the
usual way by noting that

metry; they are correct in the limit where overlap
energies between layers are negligible. For arbitrary
values of k„other than Air/c and 0, one should include
layer functions of 0- symmetry, as well as m symmetry.
The amplitude of the 0. component is of the order of the
overlap energy between neighboring layer atoms using
m and o wave functions divided by the energy difference
between m and r states. This overlap energy is less than
the overlap energy between A and A' atoms using x
functions and this is to be divided by the large energy
separat;ion between m and 0 states. We conclude that
the f's, though approximate, are satisfactory wave
functions.

The energies of the states (3.2) to (3.5) vary with k,
and will be denoted by E;0(k,), i =1, 2, 3 corresponding
to the diGerent representations. Possible forms of these
variations are shown in Figs. 5 and 6. As Table IV
shows, the energy for an arbitrary point 5 on HH con-
sists of two single levels and one doubly degenerate one.
As Carter's analysis shows, the two single levels coalesce
at H, where k, =&0r/c, to the value Ei(H). The sym-

metry of the lattice does not require this energy value
to be the same as the value Eo(H) of the doubly de-

generate level.
We now calculate the energy in the neighborhood of

the line HH using the method of Sec. II. We set
lr =he+a, with ~,=0, and calculate E(ke+x) by
diagonalizing the perturbed Hamiltonian Ho+H' re-
stricting the matrix of 8 to be the submatrix in the
ipse„The ass.umption here is that connections with
other m states are negligibly small since they are far
removed in energy. From the formal similarity between
the small representations of kg in the three-dimensional
model and those of kp in the two-dimensional model it
follows that p(n) is represented by matrices of the same
form in the corresponding manifolds. Using (2.13),
(2.17), and (2.18) for the matrix elements of p(n)
connecting different representations and also (3.4) and

(3.5), the submatrix of Ho+H' in the orthogonal set

b, a, u', b' is

b E00+F
a —D*(1+r*)

a' p*D
b'.. qa

D(1+r)
2 (Eio+E00)+F
0(Ei'—Eo')
pDQ

pD
(Eo Eo)

0 (Eio+E00)+FD*(1+r)——D(1+r*)
Eoo+F

(3.10)

Here F=h'~'/2m and D= (hP0/nz)~e' . The coefficients

p, q, r, are functions of k. which could be determined
only from explicit wave functions. The elements con-
taining p and q connect atoms 8 and A', 8 and 8'
and A and 8', that is to say atoms on neighboring
layers but not directly above each other as does the
matrix element connecting u and a'. Such terms though
not required by the symmetry to vanish are small. The
particular element in q, though q is small, can be im-

portant since it connects degenerate states. We con-
clude that the elements in p and r can be omitted. We
temporarily drop the element in q and return to it
below. The resulting determinantal equation for the-
energy can be factored to

E,'+F E —(h,/ )p E '+F —E —(hpo/ )—=0—(h/re)poK Eio+F E —(hpo/0')» Ea'+—F E—
(3.11)
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The solutions of (3.11) are

E4 Es= s (Ei'+Es') ~ [4 (E~'—Es')'+(It'/nt') po'~'j'

Esp E3 s (Es +Eo )a[-„' (Es Es )'+ (Itpo/nt)K )*.
(3.12)

The signs are chosen in such a way that E;(x=0)=E;o.
The term Ii is neglected because it is of the same order
of magnitude as terms resulting from connections to
wave functions which have been neglected. The energy
surfaces described by (3.12) represent the energy,
therefore, only in a small neighborhood of the lines LIB
and II'B'. For constant k, the energy surfaces in E,
K Ky space consist of four hyperbolas of revolution
illustrated in Fig. 7. We observe that, depending on the
order of E;o(k,), the valence and conduction bands
touch [Fig. 6j or leave a gap [Fig. 5j. However,
within a plane k, =constant the bands do not overlap
in the approximations we are considering.

The inclusion of the term in q connecting states b

and k', but not the terms in p and r, leads to a compli-
cated behavior of the energies. One finds, for o, =0

(E,o+Eso+qD)&[ (E,o Eso qD ) +D 7i

E» E,'= ', (E,'+E,'-qD )~ [4—(Es'—Es'+qD')'+D" j'
(3.13)

where D'= (kpo/ns)s:„. Here again the term Ii is neg-
lected. A sketch of the variation of E3 with x is shown
in Fig. 8 for ~,=0. The figure has a threefold
symmetry about the E axis. Such a behavior of the
energy has been discussed by Johnston. "

4. DISCUSSION

In the previous section we derived the expressions
(3.12) for E;(k,) as functions of z, and z„. These may
be used to determine the effective masses of electrons
and holes in planes perpendicular to the 2' axis. They

H,

FIG. 6. Another possible version of Fig. 5. Here the conduction
and valence bands overlap. Ef is the Fermi energy at absolute
zero.

do, however, contain certain parameters which are
dificult to determine from first principles but conceiv-
ably can be determined from experiment. These pa-
ra,meters are po and those involved in the functions of
k., E,o(k,). So far, only estimates have been made for
the variations of E; with k„based on tight-binding
approximations' ' ""though certain general statements
can be made in the light of the wave functions (3.2) to
(3.7). The functions st~ and Ns there can be viewed as
layer analogs to %annier functions.

1. In the tight-binding approximation, P~~(H) and
Ps~(H) are linear combinations of orbitals on A atoms
and ass(H) and Ps, (H) are linear combinations of
orbitals on 8 atoms. The fact that A and 8 atoms do
not experience the same crystalline fields is responsible
for the difference in the energies Es'(H&) and EP(H, )
[or Es'(Hq)$. The degeneracy of EP(Hq) and Es'(Hq)
at the point II& is a consequence of the symmetry of
the crystal.

2. The overlap of the layer x functions on nearest
neighbor layers is sufhcient to cause Ep(k, ) and Eso(k.)
to depend upon k, . If only such interactions are in-
cluded the variation is

L
lKI

FrG. 5. The solid curves show a possible dependence of band
energy on k, along the c edge of the hexagonal zone. The dashed
curves illustrate the dependence of energy on ~ and ic„ for con-
stant k,. A gap separates the conduction and valence bands.

"D. F. Johnston, Atomic Energy Research Establishment,
Harwell Report T/R —855, 1952 (unpublished); Proc. Roy. Soc.
(London) A227, 349 and 359 (1955).

Es'(k, ) =Es'(Hs)+So[1 —sin'(-,'ek, )$. (4 2)

Since nearest neighbor eGects, if not forbidden by
symmetry, should be greater than more distant eHects,

'4 J. L. Carter and J. A. Krumhansl, J. Chem. Phys. 21, 2238
(1953);M. Yamasaki, J. Chem. Phys. 26, 930 (1957).

Ey, s(k,) =Ey(Hy)&5y cos(ck,/2). (4.1)

3. The wave functions Ps~ and it ss as written in (3.2)
and (3.4) are Bloch sums of layer functions on alternate
layers. Therefore Eoo(k,) dePends on k, only by virtue
of overlaps between layers which are second eearest
neighbors or more distant neighbors. The largest of
these are presumably those that arise from second
nearest neighbors and the resulting energy dependence
on k, has the form
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FrG. 7. Schematic dependence of band energy on x for
constant k„ illustrating two possible cases.

we assume E~' and E2' to vary much more with k,
than E3'.

4. If the eOect described in 1 is larger than that
described in 2, there is a gap between valence and
conduction bands, and this is illustrated in Fig. 5. If
the reverse is true, a gap exists only in a small neigh-
borhood of k, =&~/c; beyond this there is a touching
of the valence and conduction bands, as is illustrated
in Fig. 6.

5. The form of the bands illustrated in Fig. 6 permit
the possibility of the existence of free electrons and
holes. The lowest valley of the conduction band runs
along the broken curve H~CE6JH~ and the highest
ridge of the valence band runs along H3CE6JH3. These
facts are made apparent by noting the dashed curves
of Fig. 6 which depict E; versus x at typical values of
k, in accordance with Fig. 7. The position of the Fermi
level at absolute zero is sketched in the same Fig. 6;
one sees that this lies below the top of the valence
band at the point E6 and above the bottom of the con-
duction band at the points C and J. The relatively
small variation of E3 with k, then accounts for the small
number of electrons and holes and a consequent low
value for the degeneracy temperature.

6. The variation of the energies with x as given by
(3.12) leads to effective masses for the electrons and
holes which are variable with x in the (x,y) plane.

7. The discussion above is based on the energies as

described by (3.12). These omit the connection in
energy between the degenerate states Es'(k.). When
this is taken into account, the energies are modified
and are described by (3.13). The behavior of the sur-
faces are shown in Fig. 8. The curve 8"SXFZ lies in
the conduction band and ESTFV lies in the valence
band. An overlap can occur since the point I' need not
have the same energy as that of S. In addition, the
rotational symmetry of the energy surface about the
E axis of E, ~, ~„, space is destroyed. This type of
energy surface has been discussed by Johnston. "We
have not been able to assess the importance of this
eGect.

It is possible that the parameters which determine
the energy bands of graphite may be determined em-
pirically. Considerable progress in this direction has
been made by McClure" through an analysis of the
de Haas-van Alphen eGect. He Ands that bands of the
form shown in Fig. 6 can explain this eGect.

1
wo= (+ss Nst) (a 1)

has the eigenvalue pe for p„. Therefore,

pp ——
) we*(r)p„ws(r)dr. (a.2)

One can write the Fourier series

we(r) = (I/2')g„c(k„+K, s) expLi(k„+K) rj, (a.3)

wl th
2x' f f

c(k„+K, s) =—
~~ exp) —i(k„+ K) rows(r)dady,

qd 3

the integration being taken over a two-dimensional
unit cell of area Q. The vector K is a reciprocal lattice
vector,

Then,
K=l,K,+lsK, .

ps
——is P(k„+K)„ i c(k„+K, s) i'ds.

K

(a.4)

APPENDIX

In this appendix, the parameter ps, de6ned in (2.17),
is estimated by writing I» and I» as Bloch sums of
hydrogenic orbitals. From Eqs. (2.12) and (2.17) it
follows that the function

X

T

Pro. 8. A portion of Fig.
7(al enlarged to illustrate
the eGect of a higher order
approximation.

The representation displayed in (2.6) requires the
following form of zoo when written as a Bloch sum of
atomic 2p, orbitals represented by f(r):
wp(r)~Q exp(ik„. t)D'(r —t~ —t) —f(r—t~—t)j. (a.5)

~~ J. W. McClure, Phys. Rev. :108, 612 I'1957). We are indebted
to Dr. McClure for a discussion of his work prior to publication.
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The summation is carried over the two-dimensional where J is a normalized constant,
lattice. The Fourier coeKcients are proportional to

c(k„+K,s) P exp[—i(k„+K) (r —t))
o"

P sin'(-', sS) [q(k„+K, s))'ds. (a.13)ll~ 8-1 4 0

We let f(r) be hydrogenic in form

f(r) —Z& zr/2ap—

X I[f(r—tz) f—(r ts—))dxdy (a.6)

(a.14){exp[—i(k„+K) tg) —exp[ —i(k +K) tg)}

Js„
where a0 is the Bohr radius and Z is the eGective nuclear

expl —i(ka+K) 'r)f(r)d~y (a 7) charge. The integration indicated for g can be carried
out in closed form and leads to

Ke choose the origin of the coordinate system to be
at the midpoint of the line A pBp (see Fig. 3) and set

with
S=lg —lg+1; (a.8)

then,

~(I;)-~'[fez+(ez)')c s, -

p = [k '+k„'+ (Z/2a)')&

(a.15)

(k„+K) t~= —gsS, (a.9) However,
and

where
c(k„+K, s) sin-', s.Sq(Ik +KI, s), (a.10) [q(k,z))'dz P '. (a.16)

~(lk-+KI z)= ' exp[—i(k+K) r)f«)«dy.

(a.11)

The function g is independent of direction of k„+K
since f(r) has cylindrical symmetry about the z axis.
The coefficients c(k„+K,s) are odd in sand in (k„+K),.
One has, then,

po= — Q Q sin'(-', sS)(k„„+K„)
Jll~m S 1

By substituting (a.15) into (a.12) and (a.13), one can
evaluate pp.

Ke use the value

Z/2a=1. 59 (Bohr radius) ',

pp/5=0. 63 A '. (a.17)

as obtained by Zener" in a Hartree approximation to
atomic carbon wave functions. Kith this value, the
series in (a.12) and (a.13) converge rapidly. Replacing
each series by the sum of the five largest terms, we find

X [q (k„+K, z))'ds (a.12)
"C.gener, Phys. Rev. 36, 51 (1930).


