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X-ray absorption measurements of high resolving
power for potassium, which is expected to show
wider departure from free electrons, have been
carried out by Platt. "The X edge investigated
shows quite close agreement with his theoreti-
cally predicted absorption which was based on
the assumption that the electrons are free. No
evidence existed to show an energy gap. This,
of course, is at best supporting evidence of the

!

non-existence of a gap in potassium since gaps

"J.B. Platt, Phys. Rev. 69, 337 (1946).

may exist which could be completely masked by
the eigenvalue dependence upon wave vector
direction.
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The structure of the electronic energy bands and Brillouin zones for graphite is developed
usirig the "tight binding" approximation. Graphite is found to be a semi-conductor with zero
activation energy, i.e., there are no free electrons at zero temperature, but they are created
at higher temperatures by excitation to a band contiguous to the highest one which is normally
filled. The electrical conductivity is treated with assumptions about the mean free path. It is
found to be about 100 times as great parallel to as across crystal planes. A large and anisotropic
diamagnetic susceptibility is predicted for the conduction electrons', this is greatest for fields

across the layers. The volume optical absorption is accounted for.

1. INTRODUCTION

HE purpose of this paper is to develop a
basis for the explanation of some of the

physical properties of graphite through the band
theory of solids. We shall be concerned pri-
marily with a discussion of its electrical con-
ductivity, but the treatment given makes pos-
sible the explanation not .only of the electrical
conductivity and its anisotropy but also the
thermal conductivity, diamagnetic susceptibility,
and optical absorption.

The electrical resistivity of single crystals of
graphite is about 4 to 6 X 10 5 ohm-cm. ' This
corresponds to a conductivity of the order of
that of a poor metal. The temperature coefficient
of the conductivity is negative, as in the case of

a metal. Polycrystalline graphite, on the other
hand, has a much higher resistivity which varies
very strongly according to the type of graphite
used, and has a positive temperature coefficient
of conductivity' to about 1400'C, and negative
thereafter. Since the crystals of commercial
graphites tend to be of the order of 10 ' cm, and
it is quite porous (density 1.6 as against 2.25
for single crystals), it seems reasonable to
attribute the high resistivity of polycrystalline
graphite to the crystal boundaries, on which may
be lodged impurity atoms. The latter would tend
to be driven off on heating, thus accounting for
the observed temperature dependence. We shall
show, however, that the band theory would
seem to make possible the explanation of the
conductivity properties of single crystals.

* Now at McGill University.
' Given by E. Ryschewitsch, Zeits. f. Elektrochem. ang. ~ C. A. Hansen, Trans. Am. Electrochem. Soc. 16, 329

physik. Chemic 29, 474 (1923), as 3.9—6)&10 ~ ohm-cm. (1909) gives 137.5)(10 ~ at O'C 82.5X10 ' at 1400'C.
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2. ZONE STRUCTURE OF A SINGLE
HEXAGONAL LAYER

Since the spacing of the lattice planes of
graphite is large (3.37A) compared with the
hexagonal spacing in the layer (1.42A), a first
approximation in the treatment of graphite may
be obtained by neglecting the interactions be-
tween planes, and supposing that conduction
takes place only in layers.

Graphite possesses four valence electrons.
Three of these form tight bonds with neighboring
atoms in the plane. Their wave functions are of
the form FiG. 2.

—Q, (2s)+&2/, (a.';2p)) (i = 1, 2, 3),
v3

where P, (2s) is the (2s) wave function for carbon
and P, (0;2P) are the (2P) wave functions whose
axes are in the directions o.; joining the graphite
atom to its three neighbors in the plane. The
fourth electron is considered to be in the 2p.
state, its nodal plane being the lattice plane and
its axis of symmetry perpendicular to it. The
three electrons forming co-planar bonds will not
play a part in the conductivity; we shall therefore
treat graphite as having one conduction electron,
in the 2p, state.

For the hexagonal layer the unit cell, which is
designated by 8'XYZ in Fig. 1, contains two
atoms, A and B. The fundamental lattice dis-
placements are a~ ——AA' and a2 ——AA"; their
magnitude is 1.42 g V3 = 2.46A =a. The reciprocal
lattice vectors have magnitude 2/V3a, and are
in the direction AB and AZ, respectively. From
this it follows that the first Brillouin zone is a

where

and

0= v'~+&v'2

p, = P~ expL2~ik r~]X(r —r~)

Q B exp L2 s ik rs]X(r —rQ)

(2.1)

(2.2)

hexagon (Fig. 2) whose sides are distant 1/&3a
from its center. It is easily shown that this zone
contains one electron per atom, for the density
of electron states in 0-space is 2A, where A is
the area of the crystal. The zone in question
therefore contains 2A X2/(&3a') electron states.
But the atomic area (area per atom in the layer)
is VBu'/4, and the number of atoms is 4A/V3a, ',
which is exactly equal to the number of electrons
in the zorie.

The zone containing two states per atom is
obtained by extending the sides of the hexagon
to form a six pointed star.

Let us now consider the problem from the
viewpoint of the "tight binding approximation. "
If X(r) is the normalized orbital 2p, wave func-
tion for an isolated atom, then the wave function
in the tight binding approximation has the form:

Fro. 1.

The first sum is taken over A and all the
lattice points generated from it by primitive
lattice translations; the second sum is similarly
over the points generated from B.

From variational principles it is known that
to get the best value of 8 for this approximation
we substitute in the wave equation from (2.1),
multiply by q» and y2, respectively, integrate,
and then eliminate X from the resulting two
equations.

Let us neglect the overlap of the p, wave
functions centered on different atoms, i.e. , let us
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crystal, and by symmetry H» =H». Introducing

assume

X r —r~ X r —r~ d7. =0. (2.3)

1 1
Hl 1 H22 Hl 1 H22I

N
(2.6)

Then, substituting (2.1) in

and proceeding as outlined, we get

1
H12 H12

N
(2 4)

we have, finally

E=Hn'a
~

Hgg' ~. (2.7)

where

Hg $+XH] Q ESI

H21+ ~H22

The positive sign will apply to the outside of the
hexagonal zone, the negative sign to the inside.
The discontinuity of energy across the zone
boundary is then

H~~ —— y~*Hy~d r, Hgp ——Hgg* —— @~*H&gdv,
(2.8)

and

Hgg = ~pg*H&gd r
Let us now calculate H~~'=H~~' and H~~'.

1
Hg~' ———Q exp/ —2~ik (rg —rg )]

S= Qx*pjdr = @g*ypd v.
X*(r—rg)HX(r —rg )d v-.

Hgg —BS
Hgg Hgp —BS

from which it is found that

Eliminating ) we obtain the secular equation
Omitting the exchange integrals over atoms
more distant than nearest neighbors amongst
the atoms A, and writing

Zo ——
) X*(r)HX(r)d~,

1
jHl 1+H22

2S
+ ((H» —H») '+4 IH» I

')'l (2.5) go' = — X*(r y') HX (r)d r, —
J.

Now by virtue of the. neglect of the overlap
integrals, S=X, the number of unit cells in the where g =a& (say) is a vector joining nearest
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neighbors among the atoms A, we get

~ii' =&o—2yo'(cos2mk„a+2 cosnk, a% cosy„a).

If we write
Id =~o+ (If—IIO),

where II0 is the Hamiltonian for an isolated
carbon atom, and put

H —IIp ——V—U(0,
where U is the periodic potential of the lattice
and U' is the potential field for an isolated atom,
we may write, since HpX =E0X,

Zo =E
,

t—X*(r)( U —V)X(r)dr, (2.9)
J

tX"(r—y')(U —V)X(r)dr) 0. (2.10)

Ep is the energy of an electron on the 2P, state in
carbon.

Let us next calculate H~2. For this, we shall
consider only interactions between nearest
neighbors in the lattice, the nearest neighbors of
atoms of type A being always atoms of type 8
and vice versa. Writing

yo ~l
X*(r p) (U —V)X(—r)dr) 0, (2.11)

where g =AB, we obtain

Hie' = —yo(exp[ —2~ik (a/K3) ]
+2 cosmk„a expL2vrik, (a/2%3)]),

so that

i I'm i' =yP(1+4 cos'~k„a+4 cos~k„a cosxk v3u).

The energies at various points may now be
written down:

which is greatest at the center and decreases to
zero at the corners.

The degeneracy at C and similar points, and
the zero-energy gap at these points, are pre-
sumably consequences of the symmetry of the
lattice, and are independent of the approxima-
tions considered.

It is easy to determine the form of the wave
functions corresponding to different k. Consider,
for example, the point F. Inside the zone
boundary ) = —1, and consequently the nodes
of the wave functions bisect the lines joining A

and 8 atoms: the sign of the wave function at
lattice points is designated by + or —signs in

Fig. 3. It is readily seen how the expression for
the energy arises. Since an atom has two nearest
neighbors of the same sign, and one opposite, and
since (V—U) is negative, there will be a con-
tribution to the energy from exchange between
nearest neighbors of —2pp+pp= —pp. Of second
neighbors, we have two of the same sign and four

opposite, giving us 2+0'.
In Fig. 4 are represented the nodes of the wave

function corresponding to a point outside the
zone boundary at A. Since here ) =1, the maxima
and minima correspond to the nodes of the
previous case. The expression for the energy can
be verified in the same way. Similar arguments

may be carried out for other points in k-space.
Consider next the energy contours. Near the

bottom of the band they are circular:

E=Ep —3yo —6yo'

+ '(v. +6vo')(k*'+k. ')"
The hexagon whose sides are distant 1/2a from

the center of the Brillouin zone is a surface of
constant energy. (This conclusion is, of course,
true only in the approximation which we are

at 0:
at D:
at C:
at F, inside:

outside:

8=Eo—3yp —6yp,
8=So+3+0 6+0 q

~0+3+0
+0 +0+2+0 y

&=~o+vo+2vo'.

Over a side of the zone there is across the bound-
ary at any point a discontinuity of energy of
amount

2yo(2 cosxk„e —1) (2.12) FIG. 5.
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here considering. ) Curves of constant energy
are in,dicated in Fig. 5. Near the corner C

E=EO+3yo'a~3m'yolk k la 3&'va'Ik k I'a'
(2.14)

and the surfaces of constant energy are again
circular.

It should be noted that, when the reduced zone
scheme is used, the energy contours have the
same shape for the second zone as for the first.

near the corners of the Brillouin zone. At the
absolute zero of temperature, the hexagonal zone
will be completely filled, and the next zone will

be completely empty. At higher temperatures,
there will be some thermal "overflow" into the
outer zone. The extent of this overflow will be
(in energy) of amount comparable to kT. The
energy contour E=8,+k T is approximately
circular with radius k T/(xv3yoa) provided

kT&&yp, which is certainly the case at ordinary
temperatures.

Now if N(E)dE is the number of electronic
energy states in the energy interval dB,

dr
N(E) =2A

~ lg«d, EI
(3.2)

where A is the area of the lattice, and the
integral is taken over the curve on which the
energy is E. This gives, since

I
grad&E

I
is

constant,

N(E) =
4A IE E,l-

37rpp 8
(3 3)

or, since the area per atom is &3a'/4,

3. NUMBER OF FREE ELECTRONS AND CONDUC-
TIVITY OF A SINGLE HEXAGONAL LAYER

In this section we shall neglect yp' relative to
yp. We then have

IE—E.
I
=v3w y,a I

k —k, I

Fro. 6.

the positive holes (equal in number) created in
the lower band.

To calculate the number of these, we must
know the Fermi distribution. For moderate tem-
peratures, N(E) is even in e =

I
E E,

I
over —the

whole range in which the Fermi distribution is
different from its value at absolute zero. There-
fore, in the Fermi distribution function

f(E) -f(e) = l/(e "+l). (3.5)

It follows that the number of free electrons plus
positive holes per atom is

t "N(E) ~ fkT
(3.6)

&p 6%3 E. yp

Now C. A. Coulson' has estimated that yp is
about 20 kcal. /mole, or about 0.9 ev. At room
temperature kT =0.025 ev. Therefore the "effec-
tive number of free electrons" I,ff, per atom, is

n, sr=2.3X1G 4.

To determine the conductivity of our graphite
layer, let us calculate directly the current in the
presence of a given external field. Explicitly, this
is given by

f(E) =
expl (E—f )/&Tj+ l

we shall have g=Z„. in other words, we may
write

N(E)/N = IE—E.
l
=, (3.4)

mV3yp' ~V3yp' j =2~~evf(k)drl, (2/c), (3.7)

where N is the number of atoms in the lattice.
The'form of N(E) near E, is illustrated in Fig. 6.

Conduction will take place through the elec-
trons excited into the upper band, and through

where f(k) is the Fermi distribution in the
presence of the field, and —,'c=3.37A is the dis-

' Private communication to the author.
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tance between graphite layers. f(k) is given by

er

E I )
(3.8)

where fo is the undisturbed Fermi function (3.5),
and 7 is the inverse of the probability of scat-
tering per unit time. For moderate fields we may
expand this

We will not attempt to calculate this quantity
in the present paper. Let us note, however, that
experimental evidence requires that the mean
free path decrease with temperature faster than
T '. In this connection, one might call attention
to the sharply increased mobility found in polar
salts at low temperatures for thermal electrons.
The mean free path has the form

where

f(lr) =fo(I )+g(&) (3 9)
1, =Cl —

l
(e"r—1),4

(T& '*

( ll)
(3.13)

Writing

e~
g(k) = ——F gradfo.

h

&E
87'y =do g

I
g~~dE

I

dfo
v =—gradqE, gradfo —— grad qE,

h 4E

(3 10) where 8 is the Debye temperature and C is a
constant of the order of one atomic distance. The
conductivity electrons in graphite are also
essentially thermal. If the mean free path is
assumed to be of the same order of magnitude as
given by (3.13), with C=2X10 ' cm and ll esti-
mated from specific heat evidence as about
2000'C we will get

d0~ being element of length on the curve
E=constant, we have

l'=3X10 'cm.

This gives rise to a resistivity

(3.14)

4e'r
l dfo l' gradE

j= — ~' (F gradE) da& dE,
h2C ~ dZ. ~ lgradE f

where the inner integral is over the surface of
constant energy K The component of current

jp in the direction of the field is

p =5 X10—' ohm-cm.

It seems therefore, that (3.14) gives at least the
right order of magnitude for l. This point, and
the temperature dependence of l, seem worth
further investigation.

From the formula

(3.15)0 —c v eff~ &/ jeff&24e'r
l dfo 1 p (F gradE)'

80 je SB.
ae ~ dE r~ lgradEI

Jp=—

(3.16)1Spff—
36 log2 g2yp2287 f'Gp

I lgradEldo. q dE. (3.11)
k'c J dE

0II =—
which yields, on numerical evaluation, at room
temperature

By virtue of (3.1) this is
(3.17)7B ff 1/18 electron mass.

we can calculate the "mean effective mass, "m, ff,

of our conductivity electrons. This is found to be
Averaging over all directions of the field in the
plane of the layer we get h2kT

8xe2r p B p

h2C ~ Be

16+e2V
kT log2.

h2C

(3.12)

4. THE BRILLOUIN ZONES OF GRAPHITE

The graphite lattice is built up of hexagonal
layers whose relation to each other is indicated
in Fig. 7. Dotted lines indicate one layer, and

To get a numerical value of the conductivity
it is- necessary to know something about 7, or
alternatively about the mean free path l=vv-.

4 N. F. Mott and R. A. Gurney, Electronic Processes in
Ionic Crystals (Oxford University Press, Oxford, 1940},
p. 107. Note also the increase of mobility with decreasing
temperature in the semiconductor Cu20 shown in Fig. 66,
p. 168.
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V3
&..u=ai (a~Xaa) =—a'c,

2

so that the atomic volume is

v3a'c
I atomic= (4.2)

The intercepts of a possible unit cell on adjacent
planes are shown in Fig. 8. The cell would extend
beyond these two planes on each side halfway
to the next planes, which are not shown.

Reciprocal lattice vectors corresponding to
(4.1) are

bl=, 0, 0
V3a

1 1b2=, —, 0,
v3a c

, the full lines the one immediately above it. A
set of basic displacement vectors of the lattice is

ag = [-,'v3a, ——,'a, 0], a2 ——[0, a, 0],
a, = [0, 0, c], (4.1)

c being twice the distance between layers of the
lattice. In Fig. 8 the relation between the layers is
shown in perspective. The points A, 8, t", D are
the four atoms of a unit cell.

The volume of the unit cell is

of the lowest zone is 1/c. This is; however, not
the case, for the plane at height 1/2c corresponds
to Bragg reflection of waves whose wave-length
is 2c. Thus reflections from successive planes.
(distance c/2) differ in phase by ~, and therefore
destroy each other. The structure factor there-
fore vanishes on the planes b, = &(1/2c), and
there is no energy discontinuity over them. The
horizontal boundaries of the first zone are there-
fore at b. =&(1/e). The lowest Brillouin zone
so described has the volume 4/v3a'c. But the
density of states is twice the volume of the
crystal, that is,

2X(number N of cells)
X (volume of cell) =&3a'cN.

Thus there are 4 X electron states in the lowest
Brillouin zone, or one per atom. Since as in the
case of a single layer, there is just one "con-
ductivity" electron per atom, the lowest Brillouin
zone will be just filled at the absolute zero of
temperature.

In Fig. 9 we indicate the upper balf of the zone
in question.

Let us now consider the problem from the
viewpoint, of the "tight binding approximation. "
As in the case of a single layer, let X(r) be the
2P, wave function of an isolated C atom. Then
we assume for the collective wave function of
the crystal

b3= 0, 0,
c

j e ~ ~ 4

X;(Q exp[2sik r; ]X(r—r; )), (4.3)
i=1~ ~ ~ 4

It follows that the lowest Brillouin zone is
bounded by six vertical planes forming a right where i=1, 2, 3, 4 correspond to atoms of the
hexagonal cylinder whose sides are distant 1/V3a type A, 8, C, D, respectively, and n enumerates
from its axis. It appears at first that the height the different atoms of a given type in the crystal.
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Proceeding exactly as in the case of the If we put the diagonal elements equal to Hp,
hexagonal layer, we are led to a secular equation 2 cosmk, c = I' and
for the energy

exp[ —Zvrik, (a/v3)]+2 cossk„a

Now the diagonal elements are
~ exp[sik, (a/43) ]=5, (4.5)

Htl =Hen =Has =. H44 =So —Zpo (cosZs'k&a

+2 coss&3k„a cossk„a) =Ho. (4.5)

the secular equation becomes

E—Hp —ypS y1I.' y1'FS

where
+2 cosnk„a exp[sik, (a/K3)])

go=~I X*(r pAB)—(U V)X—(r)dr) 0

H». This is equal to

where
2y1 cosxk, c

y~ ——J/X*(r —g~c) ( V—U)X(r)d~

y~)0 because (V—U) is negative, and

X*(r—yea),

X(r) have opposite signs between the planes,
where the contribution to the integral is greatest.

H14. This is equal to

Zy ~' cosm.k.c(exp [Zs ik, (a/v3) ]

Bp' is not quite the same as the Ep in the
previous section, due to a difference in the
potential; we shall, however, subsequently drop
the prime for convenience.

In .calculating the non-diagonal terms, we
shall at first consider first and second neighbors
in the planes, and also first and second neighbors
between planes.

The elements may now be calculated:
H». This is equal to

yo(e—xp[ Zsik—,(a/v3) ]

—~,S* E—II, ~,'rS ~,'rS
y1'I'S B—H p

—ypS*

y1'FS* y1'FS —ypS E—IIp

= 0. . (4.6)

Z=H, ~-,'y)ra[-„'y, 'r'+yg'~ S~']&.

With regard to the sign in front of the 21y1F term,
the choice here is immaterial, a change of sign
merely corresponding to reHection in the plane
k, = i./Zc of the two halves of the upper half-zone,
and similarly in the lower half-zone. By choosing
the negative sign, we adhere to the convention
that the bottom of the zone (point of lowest
energy) should be at the center.

The signs ~ in front of the square root cor-
'respond to the outside and inside of the lowest
zone, respectively, i.e. inside

Z =H, —-', ~,r —[-,'~, 'r'+~, 2I Sl ']', (4.»)

The exact solution of this equation presents
some difficulty. We shall neglect y1' at first, and
later treat it as a perturbation. In the lowest
approximation, then, we get on solving,

where
+2 cosvrk, a exp[ erik, (a/—v3) ]). ,

yg' ——

J
X*(r—ygD) (V U)X(r)dr, —

and is almost certainly positive, though it has
not been evaluated.

The other elements may be written in terms
of the above. It may easily be verified that

II23 H14» H24 H23 y H34 H12 FiG. 9.
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V
Fre. 10. Energy contours on the

inside of the zone.

Fj.G. 11.Energy contours on the
outside of the zone.

and outside

E =ap —-', ~,r+P~grP+ypP
l sl 'g&. (4.7b)

The energy inside is always &~HO=BO, it has
the latter value for lsl'=0 and r(0 (i.e. ,

)'4&1/2c). Now

lSl'=(1 —2 cosprk„a)' (4 8)

on the sides of the zone, and is zero at the vertical
edges. Thus the maximum energy inside (Ep) is
atta, ined on the upper (and lower) quarter of the
vertical edges of the zone.

By a similar argument, the energy outside has
its mpmmlm value, (which is also Ep) on the
middle half of the vertical edges of the zone. The
energy gap is therefore zero only at twelve
points; two on each vertical edge.

In Fig. 10 we indicate the form of the sections
of surfaces of constant energy by a plane such
as that through OS V'Q in Fig. 9.

In Fig. 11 we represent the cross sections of
the energy contours by a plane such as the ex-
tension of I'QRS beyond QS. W is at a tip of the
six-pointed star which forms the upper boundary
of the second zone, this zone being obtained by
extending the vertical sides and the top and
bottom of the 6rst zone.

The energy contours in planes k, =constant
will have a form similar to those shown in Fig. 5.
The hexagonal lines of constant energy will

appear in each plane, but will correspond to
di8'erent energies in different planes. The zero
energy gap will of course only appear in the
planes k, = &(1/2c).

The strong anisotropy in some of the proper-

ties of graphite (electrical and thermal con-
ductivity, magnetic susceptibility) is caused by
the very anisotropic form. of the energy surfaces
near the corner of the zone. These anisotropies
will become greater as the temperature is
lowered, and the surfaces of energy (Ep&AT)
approach segments of lines.

Let us now see how this picture is altered if
we take account of y~', the exchange integral
between atoms such as A and D in Fig. 8. If we
expand (4.6) to terms of the 6rst order in y&' and
solve, using the relation (4.7), we 6nd that the
energy is increased by an amount

~, lsl (s+s*)—2E„.(s+s*)
p = vpvi'r—,(4.9)

2E„„y,r a4y, '
l
S

l

'

where E„ is the "unperturbed" energy given by
(4.7). Since in the vertical edges S=O, p=0 there
both inside and out, and consequently there is
no overlap on these edges. Also, ~ vanishes
identically in the planes k, =~1/2c. Thus, at
the only points at which the energy is con-
tinuous on crossing the boundary of the zone,
e =0, and it is also identically zero in two direc-
tions at right angles through this point. This
alone makes it seem likely that the addition of e

will not give rise to any overlapping of the zones.
More detailed consideration shows that such is
in fact the case.

It should be noted 6nally that the two energy
bands corresponding to the zones considered
above arise from the same energy level (cor-
responding to the 2p-state for C). The "splitting"
of the energy level into two bands when the C
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atoms are brought together to form the crystal
is caused by the fact that the graphite crystallizes
in a form having more than one atom per unit
cell. Thus, the general properties of the zones
(and in particular their touching) does not
depend on the details of the potential field, but
rather on the geometrical form of the lattice.

where V is the volume of the crystal, and the
integral is taken over the surface on which the
energy has the constant value Z. The formula
may be readily transformed to

dkgdky
N(E) =2U

& (BE/Bk,).„,i .. (5 &)

the integral now being taken over the projection
of the surface E' =constant on the (k —k„) plane.

Throughout this and the subsequent sections
we shall consider only the exchange integrals pp

and yi (nearest neighbors in and between planes).
Let us write (4.7)

& =@—+p = —pr cos~k, c

+ (yi' cos'irk, c+y0'i 5
i
') ~. (5.2)

Calculating Be/Bk, and eliminating k, we get, for
2yy& e)0,

S. NUMBER OF FREE ELECTRONS IN GRAPHITE

The first problem is to find N(E), the distribu-
tion of energy levels. The well-known formula for
this is

do
N(E) =2U

~
gradiE

~

the result has been extended to the case &&0
by observing that it is, for e«yp, even in ~.

The result (5.4) holds only for ~(2yi. Coulson'
has estimated that y] yppp=0. 09 ev. This cor-
responds to a temperature of nearly 1000'C, so
that, insofar as calculations of the properties of
graphite near room temperature are concerned,
the expression (5.4) will be adequate.

[t should be noticed that N(E) does not go to
zero when e—+0, but approaches a finite value
proportional to yi (see Fig. 12). Nevertheless,
as can easily be seen, at the absolute zero of tem-
perature the number of free electrons is zero.

The number of free electrons is in fact ap-
proximately

N.ii=2)
p

N(E) f(E)dE,

f(E) =
eeIk1'+ $

as in the case of the plane layer. Now with small
error we may expand N(E):

SUA, -

N(E) = 2+ ~+-—+0~ —I+" .
3ira'cy0' y, 4 y„'

and extend the integral from 0 to ~. Doing

which yields, on evaluation

SV
N(E) = (4yi' —e') &+

~
e

~
ir

3x'6 cpp

+2s sin ' (5.4)
2p]

X (4y i/2 —(y i
i g~ 2 —gi)') l. (5.3)

Now we shall be interested in &=kgb«yp. &n

this case we may write

i
g

~

i =3s'(k 2+k ')@i= u

The integral (5.1) may be transformed to an
integral over I:
N(E) =

377'8 CE

i
(e~+2ey~) I&0~ (y0'u+ e')du

(Vi'~'- 4 (V0'u -~') ') ' FIg. I2,
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this we obtain

&elf = kT
si+— $2

3xG2c pp2 2

32 U kTyi,

3 pkTq '
p (kTq oq

+-I
I
s.+O~

I4&»i L ~y, ) )

where n is the normal to the surface E.=constant
and dS~ is the element of area in this surface.
Averaging over-all directions in the plane and
putting dSo 8——~«d«/n„where «' = «,P+ «oo,

e'r dfo (aE/a«) '
(5.5) e„=. —

i

— Sx«d«dE. (6.2)
k dE J~s& BE/Bk~

where
On the other hand, the conductivity perpen-

(5.6) dicular to the layers iss„=g(—1)
m=o (m+ 1)"

2e'r p dfo p BE
Sw«d«dE. (6.3)

h2 & dE' ~ (g) Bk,

ae 2oyo'(3xza'y}'*

BK +0 g+C
(6.4)

N =8 V/v3a'c.

sz ——log2, so ——~'/12, etc. , the s„'s being tabulated Op=-
in Dale's Mathematical Tables.

Now the number of free electrons per atom is On the surface e =constant
n, ff ——X,zf/X„X, being the number of atoms.
Since the atomic volume is v& o/c8,

So

4 keg m kTst = — — sy+ — $2
K3~ go' 2

3 kTq ' kTq op

(5 &)

where 3wz(k~'+k ')a'=y.
Now in the Eq. (5.2), if we remain within the

limit
~ o~ (yz,

~
$

~

' may be replaced by y with
an error of order (yz/yp) 1 percent. In terms
of y, the integral in the square bracket of (6.2}
may be written

= 2.25 X 10~

at room temperature. This is not at all in agree-
ment with the value of 2.3 X 10—' obtained by
treating a single hexagonal layer; in fact, the
dependence of e,«on T is quite different in the
two cases. On the other hand, as we shall see in
the next section, the conductivities in the plane
agree to the first order. Thus the discrepancy is
merely caused by our definition of n, f', and is
compensated by a corresponding change in m, ff,
the effective mass.

6. CO NDUCTIVITY IN THE DIRECTIO N OF THE
LAYERS AND PERPENDICULAR TO THEM

By a procedure closely parallelling that used
in Section 3 for the single hexagonal layer, we
obtain for the conductivity in the direction of
the vector u, if we assume that 7 does not depend
significantly on k,

2e'r p dfp
e(u) =-

&' ~ dE

16oyop )(,~+z.v, )/v,

c ~ o (yooy+ o') [4o'yzz —(yo'y o')' j*—

On evaluation this yields

8~—m+2 sin '——
e 2v [v ' —"j'

o+Vi [vz o j*
X log

o+71+[Pl'+ «'J'*

[4vz' —"j'*—hz' —o'3'* —vz—log-
[4v ' —oo3'+ [yz' —"j'—»-

(6.4a)

Let us note first that if we take only the leading
term in this expression, we get

See'r p dfo
edE

h'c ~ dE
(6.5)

16me'v
kT log2

k C

which is precisely what we obtained in (3.12) for
E=cpnsg the case of a single plane layer. It follows from



this and (5.7) that to the first order the eRective
mass for electrons in motion parallel to the
layers is independent of temperature. Taking
account of the higher terms does not change the
result drastically for moderate temperatures; at
room temperature (T= 293'C) we get, using the
numerical values already indicated (including
the value for f assumed in Section 3),

&ir
' = pl I

= 5 3 )& 10 ' ohm-cm.

Turning now to 0~, we get for the integral in
the square bracket in (6.3)

8 typic e fn' e ) e:
———

~

—+sin '—
(
—1—

3 yo2e' yi &2 2y, & 4yi2

e'-' ( e+y, —Ly, ' —e'j'
+ 1 ——ilog-

yim- & ~+yi+[yi' —~'3'

for the "mean e6'ective mass" of electrons moving
parallel to the graphite planes. This is valid so
long as kT&&yl, and ls equal to =-,'. Similarly,
from (5.5) and (6.6) we obtain for the mean
effective mass for motion across the graphite
planes

241og2 k'
8$gf f

~c'kT logyi/kT

With decreasing temperature this increases as
1/Tl logTI, becoming infinite as T-+0. At room
temperature its value is =25 to 30 electron
masses.

More accurate calculation of o~ by numerical
integration Rt loom temperature gives

0~
—' = p~ =4.8 & 10—' ohm-cm,

and therefore

L4y '- —"j:—Ly
' —"3'—y ~

L4yi' —"j'+Lyi' —"3'—y &-
(6,6) pit—=—=1.1y, 10-2.

fT I I PL

valid up to e=yl. We shall neglect the con-
tribution to (6.3) from beyond this point. To
determine first the order of magnitude of the
result, consider the leading term only under the
bracket; this is log yi/e. Then we get

'16 e'r yic» yi Bfo
log

3 Ii' yg'u' & „~e~ Be

16m' e'r c yi(kT)'
(6 6)

9 h' a' yp' kr
This expression will give a good approximation

only at temperatures somewhat below room
temperature. We will use it, however, to indicate
orders of magnitude. It gives for the anisotropy
factor

o.~ ~ c' ylkT
log

o-If 9log2 a' yp' kT

=0.01 at room temperature.
(6.7)

Since this does not involve v it is completely
calculable without assumptions about mean free
path.

A comparison of the formulas (5.5) and (6.5)
gives

m.ii" =2k'yi/3m'a'yo'

It is of interest to note that the anisotropy
depends on temperature, the ratio p~/p„be-
coming larger, i.e., the anisotropy becoming
greater, with decreasing temperature. An attempt
to confirm this prediction experimentally would
be interesting; the measurement of o.~ would,
however, necessarily be difficult.

In Fig. 13 is plotted a graph of the ratio
&r~/o„ for temperatures up to room temperature.

REMARKS ON OTHER PROPERTIES

Several qualitative remarks can be made
about the magnetic susceptibility and the
volume absorption properties of graphite. Graph-
ite is strongly diamagnetic, and the diamagnetic
susceptibility of single crystals can be expected
to show marked anisotropy. For a field in the
s-direction, the susceptibility depends on the
value of the quantity

B t B 6 ( B'8
,
-

I
Bk,' Bk„' (Bk,Bk„)

over energy surfaces in the neighborhood of the
boundary of the Fermi distribution, that is to
say, near the zone boundary. ' This is a large

5 See Seitz, Modere Theory of Solids, pp. 594-595.
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ts fL/r

Fzo. i3.
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quantity, of order of magnitude 9s'a'&0'/pP, or
about 6X 10' times its value, k'/m', for free elec-
trons. On the other hand, if the 6eld is in the
k,-direction, say, the susceptibility depends on

Unlike the preceding case, this depends on r.
It is, in fact, =3m'a'c'kTy02/y~, or =kTyi/yo'
times the value for the field across the graphite
planes. The difference may be ascribed to the
difference in effective masses in the quantized
orbits perpendicular to the 6eld. The anisotropy
is therefore of the same order of magnitude as
that of the conductivity.

Our other remark concerns the "optical" ab-
sorption spectrum. It is well known that elec-
trons may under the influence of radiation make
only "vertical" transitions in the reduced-zone
scheme, that is, transitions in which the wave
vector changes by one of the vectors of the
inverse lattice. Let us then consider extreme
cases. A transition from a point such as U

(Fig. 9) involves zero-energy change. The great-
est energy jump is from the center of the zone

6 Reference 5, Section 71, pp. 326—8.

(0 in Fig. 9) to a point at the middle of a vertical
edge defining a "corner" of the star-shaped
second zone. This is of amount 2LyP+9yo')' = 6yo.
Transitions involving all intermediate energies
are possible.

An energy. jump of 6po corresponds to a fre-
quency of 1.31X10"or a wave-length of about
2300A, fairly deep in the ultraviolet. Thus, there
is absorption from the longest wave-lengths
through the visible spectrum and a substantial
part of the ultraviolet. At the extreme. limits
absorption will be weak, however, due to the
small number of states involved. The greatest
number of states will correspond to energies
such as those at the mid-points of the sides of
the zone, which will give rise to transitions with

energy jumps of the order of 2yo. Thus we should

expect the strongest absorption to be in the
neighborhood of 6900A, i.e. , in the red end of
the spectrum.
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