Fermi electrons in magnetic field
Let's submerge our electron into a solid and apply an external field \(B \).

The eq. of motion is given by:

\[
\frac{d\mathbf{p}}{dt} = -e \mathbf{v} \times \mathbf{B} \quad \Rightarrow \quad \text{the particle moves by spiral in FREE SPACE!}
\]

The condition that we can still use the quasi-classical approximation:

\[
\lambda \ll \frac{\hbar}{eB}
\]

\[
\lambda = \frac{2\pi}{k} = \frac{2\pi}{\mathbf{p}} \Rightarrow \frac{2\pi}{\mathbf{p}} \ll \frac{\mathbf{p}}{eB}
\]

\[
\frac{\hbar}{eB} \ll \frac{\mathbf{p}^2}{2\pi m_0}
\]

So, called the cyclotron frequency

\[
\omega_c = \frac{\hbar B}{m_0} \ll \frac{\mathbf{p}^2}{2\pi m_0}
\]

Now recall, \(\mathbf{p} \) inside the crystal cannot change unless we apply the external forces. So

\[
\frac{dp}{dt} = -e \mathbf{v} \times \mathbf{B} \quad \text{is still on if we assume} \quad \mathbf{p} \quad \text{is a quasi-momentum}
\]

\[
(\mathbf{v} \cdot \frac{dp}{dt}) = -e \mathbf{v} \cdot (\mathbf{v} \times \mathbf{B}) = 0 \quad \text{and}
\]

\[
(\mathbf{B} \cdot \frac{dp}{dt}) = \ldots = 0
\]
\[\left(\frac{dE}{dt} \right) = \text{conservation} \quad \text{every} \]

i.e., \(u = \frac{dE}{dp} \) and \(\left(\frac{dE}{dt} \right) = \left(\frac{dE}{dp} \right) \frac{dp}{dt} = \frac{dE}{dt} = 0 \)

Since \(\frac{dE}{dt} = 0 \), this means that

that the tip of the \(\vec{p} \) vector glides

on the surface \(E(\vec{p}) = \text{const} \)

From \(\left(\frac{dE}{dt} \right) = 0 \)

we get

\[
\frac{dp}{dt} = \frac{dp_{11}}{dt} + \frac{dp_{12}}{dt} \Rightarrow \frac{dp}{dt} = 0
\]

\[\Rightarrow \text{a projection of the} \]

momentum

on the direction of \(\vec{B} \) is conserved

\[
\begin{cases}
p_{11} = \text{const} \\
E(p) = \text{const}
\end{cases}
\]

the common solution

gives the curve

which is the result of a cut of \(E(p) \)

by a plane which is \(\perp \) to the magnetic

field
Depending on topology of the F.S., we may end up with a closed or open trajectories. Here is the example of two types of trajectories:

Trajectory in real space

Statement: Trajectory of a quark particle in p-space defines its trajectory in r-space. To show this I will project p on the plane \(\perp \) to B.

\[
\frac{dp_\perp}{dt} = e \nu_\perp \times \vec{B} = e \frac{dr_\perp}{dt} \times \vec{B}, \quad \frac{dr_\perp}{dt} \propto \vec{B}
\]

\(\Rightarrow \) \(|p_\perp| = e |B| |r_\perp| \) \(\) 1) \(p_\perp \) scales with \(r_\perp \)

2) since \(\nu_\perp = \frac{dr_\perp}{dt} \) in \(r \)-space \(\perp \) to \(\frac{dp_\perp}{dt} \)

\(\) in \(p \)-space (\(\) from \(\frac{dp_\perp}{dt} = e \frac{dr_\perp}{dt} \times \vec{B} \))

This means each element of projection in \(r \)-space \(\perp \) each element in \(p \)-space, i.e., the trajectories are turned 90° wrt each other.
In short to see the trajectory in r-space rotate the plane by 90° and scale it by \(\frac{1}{eB} \) times. The direction of motion is the same.

Let's estimate a characteristic size of a trajectory in the xtal.

Recall \(\lambda_0 < \frac{PF}{eB} \Rightarrow P_F = \frac{\hbar}{\alpha} \), \(eB \approx \lambda_0

then \(B < B_0 = \frac{\hbar}{e^2a^2} \approx 10^{-9} - 10^{-5} \) T

The largest ac field \(\approx 50T \)!

A condition for a cyclical motion in the field is \(\lambda > r = \frac{\hbar}{eB} \), or within each m.f.p. at least 1 turn must be completed. Now let's replace \(P_F \approx \hbar/a \); \(\lambda > \frac{\hbar}{e^2aB} \) \(\Rightarrow B > \frac{a}{e^2} \frac{\hbar}{\lambda^2} \approx \frac{a}{e} B_0 \approx \frac{a}{e^2} (10^4 - 10^5) \) T

since for pure metals \(\lambda \approx 10^3 - 10^5 \), \(a \Rightarrow \) The cyclical trajectory is found already at few Tesla!
Energy Spectrum of quasiparticles in Magnetic field

Ideal gas of electrons:

\[E(\mathbf{p}) = \frac{p^2}{2m_0} \]

Let us separate those

\[E = \frac{p_x^2 + p_y^2}{2m_0} + \frac{p_z^2}{2m_0} = E_\perp + E_\parallel \]

Recall the density of states for 2D is \(\text{const}(E) \)

\[\rho^{2D}(E) = \frac{m_e^*}{\pi \hbar^2} \]

Every energy level is degenerate for each \(E \) we have many \(p_x \) and \(p_y \) such as \(p_x^2 + p_y^2 = ? \) for many \(n_x \) and \(n_y = 2m_0 E_\perp \)

In the plane \(\perp B \) electrons move on the circle of \(r_c = \frac{m_0 \sqrt{v}}{e B} \) with \(\omega_c = \frac{eB}{m_0} \)

The energy is quantized:

\[E = E_\perp + E_\parallel = \frac{\hbar \omega_c}{2}(n + \frac{1}{2}) + \frac{p^2}{2m_0} \]

\(n = 0, 1, 2, \ldots \)
For energy E_1 we have only energies $\frac{1}{\hbar} (n + \frac{1}{2}) \frac{1}{\hbar}$ separated by $\frac{1}{\hbar}\hbar$. For $n < \frac{1}{2}$ we get $E_{n} = \frac{p^2}{2m_0} = \frac{b^2}{2m_0} \left(\frac{2\pi n}{L_x} \right)^2 \hbar^2$

huge # of states almost quasicontinuous. See page 5.

For discrete values of E_1 in the quasiclassical approximation corresponds a specific trajectory, which depends on the quantum n. Then our condition

$\lambda_0 \ll \xi_E$ is equal $\hbar \omega c \ll E_f$
To find the radius R_{B_n}, let's compare the classical and quantum energies.

$$E_{\text{classical}} = \frac{\hbar^2}{m_0 w_c^2} R_{B_n}^2$$

and

$$E = \hbar w_c (n + \frac{1}{2})$$

From this we get

$$R_{B_n} = \sqrt{\frac{2 \hbar}{m_0 w_c} (n + \frac{1}{2})} = \sqrt{\frac{2 \hbar}{eB} (n + 1/2)}$$

So for the electron to go from the orbit n to $n+1$ needs to get a nice $\hbar w_c$.

- For the same n, E - get the same R_{B_n}, but h_2 and p_2 can be different.

Let's include spin

For electron with mag. moment $\mu_B = e \hbar / 2m_0 c$

its energy in $B = -\mu_B B$ i.e. with the spin we split a Landau level into 2 sub levels depending on $\mu \uparrow \downarrow B$ or $\mu \uparrow \downarrow -B$

$$E(n, s, k_z) = \frac{\hbar}{2} w_c (n + \frac{1}{2}) + s \mu_B B + \frac{\hbar^2 k_z^2}{2m_0}$$

$s = \pm 1$.

$s = +1 \Rightarrow ^{+}$ state & $s = -1 \Rightarrow ^{-}$ state is the lowest level 0.

Note: Spin removes the Landau degeneracy for the same n we have $n, s = +1$ and $s = -1$.

(see page 8)
Each state on the parabola is strongly degenerate.

Spin degeneracy is only absent for 0⁻.

Since E continuously depends only on \(p_z \), it looks like we have a quasi-1D system!

Distribution of electrons in p-space

Assume for have a single zone metal with a spherical Fermi surface.

If \(B = 0 \) all the states are inside the sphere and occupy \((2\pi h)^3 \). So we mark the \(p_y \) points separated by \(2\pi h \). The maximum circle is \(p_F = \sqrt{2m^*E_F} \). For any other \(X \)-section the states fill up the circle of \(\sqrt{p_F^2 - p_z^2} \); as \(p_z \to p_F \) the radius goes \(\to 0 \).
The uniform distribution of states with \(p_x, p_y, p_z \) corresponds to \(E = E(p_x, p_y, p_z) \) when \(0 < |p| < p_F \).

Now we turn on \(B \); in the plane \(\hbar w_c (n + \frac{1}{2}) \) for \(p_z = \text{const} \), to find the radius \(p_n \)

we write down \(E_{\text{class}} = \frac{p_x^2 + p_y^2}{2m^*} = \frac{\hbar^2}{2m^*} \)

\(E_{\text{quantum}} = \frac{\hbar^2}{2\hbar w_c (n + \frac{1}{2})} \)

\[\Rightarrow p_n = \sqrt{\frac{2m^* \hbar w_c (n + \frac{1}{2})}{\hbar^2}} \] (see fig 6 in page 8)

In other words: all states which we had confined inside the orbits with a radius \(p_n \), \(n = 0, 1, 2, \ldots \), now collapse on the circles; see fig. a vs. b in page 8.

Note the area in a) \(\pi \left(p_{n+1}^2 - p_n^2\right) = \)

Except for 0-state:

\(\pi p_0^2 = \pi m^* \hbar w_c \)

So for each allowed orbit we have the same # of \(E^- \) \(N_L = \frac{m^* l_x l_y \hbar w_c}{\pi \hbar^2} \) \(\Rightarrow \)

degeneracy of those \(p_n \) orbits is the same as the discrete Landau levels.

Note since \(p_n \) is independent of \(p_2 \) all...
Orbits are of the same radius then we deal with the Landau cylinders.

- Number of states filled up by \(e^- \) on each cylinder depends on its length within \(p_z \).

- With increasing \(p_z \) length ↓

- \# of cylinders ↓ with increasing ↓

To be cont'd