The compound with chemical formula La₂CuO₄ has the 3D structure with bodycentered tetragonal conventional cell shown in Fig. 1. Note that it comprises a stack of LaO and CuO₂ planes.

1. On Fig. 1, indicate the primitive vectors and basis of a primitive cell in the 3D crystal.

The electronic configurations of the neutral atoms making up this structure are

La: (Xe)
$$5d^1 6s^2$$
, Cu: (Ar) $3d^{10} 4s$, O: $1s^2 2s^2 2p^4$.

2. According to an LCAO calculation, is this compound insulating or metallic?

The LCAO calculation shows that the La and oxygen in the LaO planes are in the configurations La^{3+} and O^{2-} corresponding to fully occupied shells. Bands resulting from these orbitals are at energy levels well below those of the Cu(3d) and O(2p) bands of the oxygens in the CuO_2 planes. It is thus the latter that constitute the valence or conduction levels of the crystal. It therefore suffices to consider the electronic structure of the CuO_2 plane.

3. Specify the primitive cell of the CuO₂ plane, along with its reciprocal lattice and first Brillouin zone.

We shall assume that the last occupied band corresponds to one orbital per Cu site of atomic energy E_0 . The band is calculated using the LCAO approximation, only taking into account nearest-neighbour hopping integrals t_0 and t_1 .

4. Find the eigenergies $E(k_x, k_y)$ and plot the constant energy curves in the first Brillouin zone. What is the curve corresponding to an occupancy of one electron per unit cell?

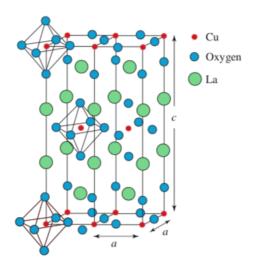
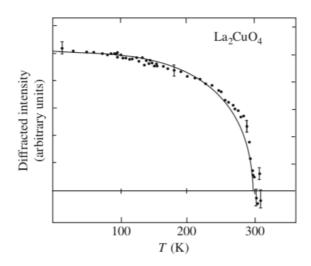



Fig. 1 Crystal structure of La₂CuO₄, showing bodycentered tetragonal conventional cell

Fig. 2 Temperature dependence of the intensity of the neutron diffraction peak at $(\pi/a,\pi/a)$. Adapted from Yamada, K., Kudo, E., Endoh, Y., Hikada, Y., Oda, M., Suzuki, M., Murakami, T.: Solid State Commun. **64**, 753 (1987)

Conductivity measurements show that La_2CuO_4 is insulating. Moreover, neutron diffraction produces Bragg peaks at the four points $(\pm \pi/a, \pm \pi/a)$ of the plane below 300 K. The intensity of these peaks increases at low temperatures and saturates at T=0 K, as shown in Fig. 2. X-ray diffraction only picks up the Bragg spots corresponding to the reciprocal lattice found in question 3.

5. What can you deduce about the ground state of the electronic system of the CuO₂ plane? Specify the primitive cell of the real lattice of the CuO₂ plane for T < 300 K.

6. is optional, but you should try

A fraction of the La³⁺ is replaced by Sr, which has the ionic form Sr²⁺ in the crystal. In the compound La_{1.85}Sr_{0.15}CuO₄ it is observed that the spots at the four points $(\pm \pi/a, \pm \pi/a)$ of the plane disappear in a neutron diffraction experiment. Moreover, this compound is superconducting with a critical temperature of 40 K.

6. What conclusions can be drawn from these observations? According to the LCAO approximation, what should be the Fermi surface of this metal?