HW 3

Problem 1

Proof that $\quad \psi_{n \mathbf{k}}(\mathbf{r})$ satisfies Bloch's theorem:

$$
\psi_{n \mathbf{k}}(\mathbf{r})=\frac{1}{\sqrt{N}} \sum_{\mathbf{R}} e^{i \mathbf{k} \cdot \mathbf{R}} \phi_{n}(\mathbf{r}-\mathbf{R})
$$

Problem 2:

a) Calculate band dispersion for a hydrogen like crystal in 2D:

For $\mathrm{a}=10^{\circ} \mathrm{A}, \mathrm{b}=5^{\circ} \mathrm{A}$, and $\gamma(\mathrm{a})=0.5 \mathrm{eV}, \gamma(\mathrm{b})=1 \mathrm{eV}$ and $\varepsilon_{\mathrm{s}}=2 \mathrm{eV}$.
b) Plot 1st BZ of the 2D crystal , e.g. $E\left(k_{x}\right)$ and $E\left(k_{y}\right)$
c) Plot color surface plot of $k x$ vs ky where $E(k)$ is marked by color.
d) What is the bandwidth of the crystal?
e) What is the effect of overlap integral on band dispersion? Consider the case of $\gamma(a)$ $=0.5 \mathrm{eV}$ and $\gamma(\mathrm{b})=0.5 \mathrm{eV}$ and $\gamma(\mathrm{b})=0 \mathrm{eV}$.

Problem 3:

Calculate band dispersion $E(k)$ for a face-centered 3D cubic crystal of size a (12 nearest neighbors).

