HW#3

- 1. Bishop 6.4
- 2. Bishop 6.11
- 3. Bishop 6.15
- (9) GP regression

Re-use or recreate the Bessel function $(J_o(x))$ dataset from HW#1, problem 3.

Fit this data using GP with

(a) RBF kernel: $k(x_n, x_m) = \ell^{-\frac{\theta}{2}(x_n - x_m)^2}$ (b) exponential kernel: $k(x_n, x_m) = \ell^{-\theta|x_n - x_m|}$

 \Rightarrow Find $\hat{\theta}$, the optimal value of θ for both kernels, by maximizing log $p(\tilde{t}|\theta)$ vert θ . Report both $\hat{\theta}$ and log $p(\tilde{t}|\hat{\theta})$.

and log $p(t|\theta)$.

For loth kernels, find μ and θ of the predictine distribution, using $\theta = \theta$.

Plot $J_0(x)$, t, and $M \pm 5$ separately for each bernel.

Note: it is allowed to use standard GP implementations, as opposed to recreating GP regression from scratch