Differential Equation - Analytic Methods

In this section we will take a look at differential equations, taking advantage of the possible use of the tools we learnt about (complex) analytic functions.

General system of first order equations

\[\frac{d}{dz} u_k(z) = h_k(u_1, \ldots, u_n, z) \quad k = 1, \ldots, n \]

Note that a general n-th order diff. eq.

can be recast this way, at least locally:

\[F(u, u', \ldots, u^{(n)}, z) = 0 \]

Solve this to rewrite

\[u^{(n)} = f(u, u', \ldots, u^{(n-1)}, z) \]

Now define \(u_k = u^{(k-1)} \), namely \(u_1 = u, u_2 = u', \ldots, u_n = u^{n-1} \)

\[u_1' = u_2 \]
\[u_2' = u_3 \]
\[u_n' = u_n \]
\[u_n' = f(u_1, \ldots, u_n, z) \]
Example 1: \(m \frac{d^2x}{dt^2} = -V'(x) \) 3. One second-order equation

\(U_1 = x \quad U_2 = \frac{dx}{dt} \)

\(\frac{dU_1}{dt} = U_2 \quad \frac{dU_2}{dt} = \frac{1}{m} V'(x) \) 3. Two first-order equations.

For the general first-order equation we need \(u(t_0) = u(x_0) \), the "initial conditions" to determine a solution. Intuition:

\[
\begin{align*}
\delta & = \delta x = \delta \bar{y} \\
\delta z & = \delta \bar{z} \\
\delta x & = \delta \bar{y} \\
\delta y & = \delta \bar{z} \\
\end{align*}
\]

Can this intuition be made to work analytically? A mostly

For complex analytic differential solution may be path dependent

and depend on analytic continuation.
For an autonomous system

\[\frac{du_k}{dt} = h_k(u_1, \ldots, u_n) \quad k = 1, \ldots, n \]

one can make it locally into an \(n-1 \) variable non-autonomous system.

Call \(u_n = t \)

\[\frac{du_k}{dt} = \frac{h_k(u_1, \ldots, u_n, t)}{h_n(u_1, \ldots, u_{n-1}, t)} \quad n = 1, \ldots, n-1 \]

Example:

\[m \ddot{x} = -kx \]

\[\Rightarrow \begin{align*}
 \frac{du_1}{dt} &= u_2 \\
 \frac{du_2}{dt} &= -\frac{k}{m} u_1
\end{align*} \]

\(u_1 = x \)
\(u_2 = \dot{x} \)

Note that \(\frac{du_2}{du_1} = -\frac{m}{k} \frac{u_2}{u_1} \)

Use variable separable method \(\int u_2 du_1 = -\frac{k}{k} \int \dot{x} \ddot{x} \)

\[m \left(\frac{dx}{dt} \right)^2 + \frac{k}{2} x^2 = \text{const} \]

\[\left[\frac{m}{2} \left(\frac{dx}{dt} \right)^2 + \frac{k}{2} x^2 = \text{energy} \right] \]
Scale invariant equation:

\[z \rightarrow a^z \quad \text{an invariance} \]

Example:

\[\frac{du}{d\tau} = \frac{1}{2} g(u) \]

Trick:

\[z \frac{du}{d\tau} = g(u) \Rightarrow \frac{du}{d\tau} = g(u) \quad \text{where } z = e^\tau \]

\[= D \int \frac{du}{g(u)} = z + c \Rightarrow z = C e^{\int \frac{du}{g(u)}} \]

For \(g(u) = e^u \)

\[z = C e^{\int \frac{du}{g(u)}} \Rightarrow \left(\frac{z}{C} \right) = \left(\frac{u}{u_0} \right)^\tau \]

\[= D \quad u = u_0 \left(\frac{z}{C} \right)^\tau \]

Isobaric ODE:

\[z \rightarrow a z \quad u \rightarrow a^u \]

(scale covariant)

Try \(u = z^p v \). The function is invariant \(\Rightarrow D \) scale invariant equation.

Example:

\[\frac{du}{d\tau} = \frac{u}{z} - z \]

\[u = a^z, \quad z = a^z \quad \text{is an invariance} \]

Introduce \(v \) s.t. \(u = z^p v \)

Note \(u \) invariant under transformation.

\[\frac{z}{z^2} \frac{dv}{dz} + 2z \frac{dv}{dz} = 2v - 2 \stackrel{?}{\text{Get rid of extra factor of }} dz\]

\[z dv = -v - 1 \]

Now ready to use tricks from scale invariant equation.

\[\ln z = -\ln (z^2 + 1) + \text{const} \]

\[v = \frac{C + 2}{z} \]

\[= D \quad \ln z = \ln \left(\frac{z}{z^2} \right) \]

Read and Understood By

\[z = \frac{C + 2}{z} \quad \Rightarrow DU = z(A - z) \]

Signed Date

\[z = \frac{C + 2}{z} \quad \Rightarrow DU = z(A - z) \]

Signed Date
First Order Diff Eqs

Linear first order eqs

Homogeneous Linear Eq

\[u'(z) + p(z) u(z) = 0 \]

\[\frac{du}{u} = -p \quad \Rightarrow \quad u(z) = u(z_0) e^{-\int_{z_0}^{z} p(\zeta) d\zeta} \]

By Th., notice that if \(p(z) \) has a simple pole at \(z_1 \), then

\[\int_{z_0}^{z} p(\zeta) d\zeta = \alpha \ln (z_2 - z_1) + \cdots \]

and \(u(z) \sim (z - z_1)^\alpha \), branch pt. if \(\alpha \notin \mathbb{Z} \)

So meromorphic "coefficients" could give rise to solutions with branch points

Now we can solve the inhomogeneous problem

\[u'(z) + p(z) u(z) = f(z) \]

Define \(h(z) = e^{-\int_{z_0}^{z} p(\zeta) d\zeta} \)

and let \(u(z) = h(z) w(z) \)

\[h(z) w'(z) = f(z) \quad \Rightarrow \quad w(z) = u(z_0) + \int_{z_0}^{z} \frac{f(\zeta)}{h(\zeta)} d\zeta \]

\[\Rightarrow \quad u(z) = (u(z_0) + \int_{z_0}^{z} \frac{f(\zeta)}{h(\zeta)} d\zeta) \frac{1}{h(z)} \]
This is just the method of integrating factor.

Riccati equation

We will mention a particular kind of first order nonlinear differential equation, namely, Ricatti eqn.
\[u' = q(x) + 2q(x)u + 2x(x)u^2 \]

It is interesting that this can be transformed into a linear second order equation.

We have seen such a thing in the context of quantum mechanics.
\[\psi(x) e^{ix'x} - \frac{i2}{2m} \psi''(x) + V_0 \psi = E \chi \]
\[D^2 = \frac{i2}{2m} \left(\frac{\partial^2}{\partial x^2} + i \frac{\partial}{\partial x} \right) \psi(x) + V_0 \psi(x) - E = 0 \]

If \[\frac{\partial}{\partial x} \]
\[\psi' = \chi \]
\[\psi'' = \frac{2m}{i} \left(E - V_0 \right) \chi - \frac{i}{2m} \chi^2 \]

This is the beginning of the WKB approximations.

We thus have \[\psi(x) = e^{-\frac{i}{2m} \int (E - V_0(x)) dx} \]
\[\frac{y'(z)}{y(z)} = -\frac{1}{q(z)} \frac{y''(z)}{y(z)} \]

\[u'(z) = -\frac{q(z)}{q_2(z)} \frac{y'(z)}{y(z)} + \frac{1}{q_2(z)} \left(\frac{y'(z)}{y(z)} \right)^2 - \frac{1}{q_2(z)} \frac{y''(z)}{y(z)} \]

\[q_0(z) + q_1(z) u(z) + q_2(z) u(z)^2 = \frac{q_0(z)}{q_2(z)} - \frac{q_1(z)}{q_2(z)} \frac{y'(z)}{y(z)} + \frac{q_2(z)}{q_2(z)} \frac{y''(z)}{y(z)} \]

So Riccati eqn \(\Rightarrow y''(z) = \left(\frac{q_1(z)}{q_2(z)} \right) y'(z) + q_2(z) y(z) \)

which is a second order linear differential equation.

We will discuss such equations soon.

Interestingly, if we know one particular solution of the Riccati equation of the form \(u_0(z) \), we can try to find a class of solutions as follows:

Let \(u(z) = u_0(z) - \frac{c}{u(z)} \), while \(u'_0(z) = q_0(z) u_0(z) + q_1(z) u_0(z)^2 \)

\[u'(z) = u'_0(z) - \frac{c}{u_0(z)} u'(z) \]

\[q_0(z) + q_1(z) \left(u_0(z) - \frac{c}{u_0(z)} \right) + q_2(z) \left(u_0(z)^2 - \frac{c}{u_0(z)} \frac{2c}{u_0(z)} \right) \]

\[= q_0(z) + q_1(z) u_0(z) + q_2(z) u_0(z)^2 - \frac{c}{u_0(z)} \left(q_1(z) 2u_0(z) + 2q_2(z) u_0(z)^2 \right) - cq_2(z)^2 \]

\[\Rightarrow u'(z) = \left(q_1(z) + 2q_2(z) u_0(z) \right) u_0(z) - cq_2(z)^2 \]

which can be solved by the method of integrating factor.
General first-order differential equation, exact differentials and integrating factors.

The general first-order equation is of the form
\[g(u, z) \, du + h(u, z) \, dz = 0. \]

If \(g(u, z) = \frac{\partial F}{\partial u} \) and \(h(u, z) = \frac{\partial F}{\partial z} \)

then the equation is just \(\partial F = 0 \)
\[\Rightarrow F(u, z) = \text{constant} \text{ in the solution}. \]

If the one form is \(df \), it is exact.

If the one form is not exact one may find \(\lambda(u, z) \) so that \(\partial \lambda(u, z)(g(u, z) \, du + h(u, z) \, dz) \)
is an exact form. Such a \(\lambda \) is called an integrating factor. Its existence can be proved in many cases but finding it practically may be hard.

[what we really mean is that we have a curve \(x(t) \mapsto (u(x(t)), z(x(t))) \), so that
\((gdu + hdt)(dx) = 0 \). Such a curve would be a parametrized solution. The domain of \(t \) could be real intervals or complex regions depending on the context.]
Linear Differential Equations

Linear systems with constant coefficients

\[\frac{d U(t)}{dt} = \sum_{k=1}^{n} A_{kk} U(t) \quad A_{kk}, k=1, \ldots, n \]

\[\frac{d^2 U(t)}{dt^2} = A U(t) \]

\[U(t) = \begin{pmatrix} u_1(t) \\ u_2(t) \\ \vdots \\ u_n(t) \end{pmatrix} \quad A = \begin{bmatrix} A_{11} & -A_{1n} \\ -A_{n1} & A_{nn} \end{bmatrix} \]

Note that \(U(t) = e^{tA} u(0) \) solves this equation.

For the sake of convenience, set \(z_0 = 0 \).

Choose a basis in which \(A = D + N \) is diagonal.

In particular, choose the Jordan normal form

\[A \rightarrow \begin{pmatrix} \lambda_1 & 1 & 0 \\ 0 & \ddots & 1 \\ 0 & \cdots & \lambda_n \end{pmatrix} \]
Let \(U(\lambda) = \sum \frac{\xi(\lambda)}{\lambda - \lambda_k} \).

\(\xi_1, \ldots, \xi_n \) being the basis vectors.

Note that \(\xi_1(\lambda) \)'s corresponding to the same Jordan block affect each other.

If each block is 1-dimensional (the case where \(A \) is diagonalizable), life is simple.

\[
\frac{d}{d \lambda} \xi_k(\lambda) = \lambda_k \xi_k(\lambda) \quad \Rightarrow \quad \xi_k(\lambda) = e^{\lambda_k \lambda} \xi_k(\lambda_0)
\]

What if there is a nilpotent component?

Let us look at the \(2 \times 2 \) block case.

\[
\frac{d}{d \lambda} \begin{pmatrix} \xi_1(\lambda) \\ \xi_2(\lambda) \end{pmatrix} = \begin{pmatrix} \lambda & 1 \\ 0 & \lambda \end{pmatrix} \begin{pmatrix} \xi_1(\lambda) \\ \xi_2(\lambda) \end{pmatrix}
\]

So \(\frac{d}{d \lambda} \xi_2(\lambda) = \lambda \xi_2(\lambda) \quad \Rightarrow \quad \xi_2(\lambda) = e^{\lambda \lambda} \xi_2(\lambda_0) \)

Then \(\xi(\lambda) = \lambda \xi_1(\lambda) + \xi_2(\lambda) \)
This is an inhomogeneous first order equation.

\[
\frac{d}{dz} \left(e^{\lambda z} \xi_1(z) \right) = \xi_2(z)
\]

Method of integrating factor

\[e^{\lambda z} \xi_1(z) - \xi_1(0) = \xi_2(z)\]

Integrate from 0 to z

\[-1\int_{0}^{z} e^{\lambda x} \xi_1(x) = e^{\lambda z} \xi_1(0) + \int_{0}^{z} e^{\lambda z} \xi_2(z) d\xi_2\]

You can imagine, that for bigger blocks we will get higher order polynomials. If eigenvalues \(\lambda_1, \ldots, \lambda_m\) have multiplicities \(m_1, \ldots, m_m\)

\[U(z) = e^{z} \sum_{i=1}^{m} \frac{z^{m_i}}{m_i!} \]

where \(\psi_i(z)\) are polynomials of degree \(d_i \leq m_i - 1\), \(m_i \geq 1\).

For inhomogeneous equations

\[
\frac{d}{dz} U(z) = A U(z) + f(z)
\]

One can see that

\[U(z) = e^{Az} U(0) + \int_{0}^{z} e^{A(z-x)} f(x) dx\]
We will use the notation $L[u] = 0$, $L = \frac{d}{dt} I + P(t)$, and $Q \cdot q = \frac{d}{dt} I - A$ for the homogeneous solutions u_1, u_2 of the equation $L[u] = 0$ lead to linear combination $\alpha u_1 + \beta u_2$ which would also be a solution $L[u] = 0$. So the solutions form a vector space.

Given that the space of initial conditions are n-dimensional we expect the solution space to be n-dimensional as well.

Many of these observations go over to the more general homogeneous first order linear equations

$$\frac{d}{dt} u(t) + P(t) u(t) = 0$$

$P(t)$ is a matrix of size $n \times n$ with analytic entries. The previous discussion correspond to $P(t) = -A$, a constant matrix.

Now consider n-solutions of the linear homogeneous equation: u_1, \ldots, u_n.
Consider the matrix

\[
\begin{pmatrix}
\mathbf{u}_1 & \mathbf{u}_2 & \cdots & \mathbf{u}_n
\end{pmatrix} = \mathbf{U}(z)
\]

If the \(\mathbf{u}_1, \mathbf{u}_2 \) are linearly dependent, then

\[
W(\mathbf{u}_1(z), \ldots, \mathbf{u}_n(z), z) = \det \left[\mathbf{u}_1(z), \ldots, \mathbf{u}_n(z) \right]
\]

would be zero for all \(z \). Thus \(W \) being non-zero somewhere is the indication that these are linearly independent solutions.

Since

\[
\frac{d}{dz} \mathbf{u}_i(z) = \mathbf{P}(z) \mathbf{u}_i(z),
\]

consider \(\mathbf{u}_i(z+h) \) for small \(h \).

\[
\mathbf{u}_i(z+h) = \mathbf{u}_i(z) + h\mathbf{P}(z) \mathbf{u}_i(z) + O(h^2) \mathbf{u}_i(z)
\]

So

\[
\left[\mathbf{u}_1(z+h), \ldots, \mathbf{u}_n(z+h) \right] = \left(\mathbf{I} - h\mathbf{P}(z) + O(h^2) \right) \left[\mathbf{u}_1(z), \ldots, \mathbf{u}_n(z) \right]
\]

Taking \(\det \)

\[
W_{z+h} = \det \left[\mathbf{I} - h\mathbf{P}(z) + O(h^2) \right] W_z.
\]

\[
\frac{dW}{dz} = -\text{tr}(\mathbf{P}(z)) W(z)
\]
Note that
\[det \begin{bmatrix} 1 - h P_{1,1}(2) & -h P_{1,2}(2) & \cdots & -h P_{1,n}(2) \\ -h P_{2,1}(2) & 1 - h P_{2,2}(2) & \cdots & -h P_{2,n}(2) \\ \vdots & \vdots & \ddots & \vdots \\ -h P_{n,1}(2) & -h P_{n,2}(2) & \cdots & 1 - h P_{n,n}(2) \end{bmatrix} = \left(-h P_{1,1}(2) \right) \cdots \left(1 - h P_{n,n}(2) \right) + O(h^4) \\
= 1 - h \left(P_{1,1}(2) + \cdots + P_{n,n}(2) \right) + O(h^2) \\
= 1 - h \text{tr}(P(2)) + O(h^2) \\

Since W is a scalar satisfying a first order homogeneous equation, we can solve it exactly:

\[W(x) = e^{-\frac{1}{2h} \text{tr} P(x) + i} W(x_0) \]

If we restricted ourselves to $P(x) = -A$, then

\[-\text{tr} P(x) = \text{tr} A = \lambda_1 + \cdots + \lambda_n \]

In the diagonalizable case, with real argument, "volumes" change like $e^{\lambda x}$.

The change of Wronskian just captures that.

\[(U(\phi x)) = \begin{bmatrix} U_1(\phi x) & \cdots & U_n(\phi x) \end{bmatrix}, \]

In a called fundamental solution if $U(\phi x) e^{\lambda x}$ and $U(\phi x) e^{\mu x}$.

Now we take an n-th order differential equation!
Linear nth order differential equation is defined by the equation:

\[L[u] = L(u^{(n)} + p_1(t)u^{(n-1)} + \cdots + p_{n-2}(t)u'' + p_{n-1}(t)u' + p_n(t)u = 0 \]

\[L[u] = 0 \] is the homogeneous equation.

\[L[u](t) = f(t) \] is the inhomogeneous equation.

If \[u_1 \] is a special solution, so that

\[L[u_1](t) = f(t) \]

and \[u \] is a solution of the homogeneous equation:

\[L[u+u_1](t) = f(t) \]

In fact, any solution of the inhomogeneous equation can be written this way, since \(u_1 \) is a solution to the homogeneous equation.

Now, let us write this equation as a system of first order equations with \(U = \begin{pmatrix} u & u' \\ u' & u'' \end{pmatrix} \)

\[\frac{d}{dt} \begin{pmatrix} u \\ u' \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} u \\ u' \end{pmatrix} + \begin{pmatrix} 0 \\ f(t) \end{pmatrix} \]

For simplicity, we will take \(f = 0 \), but it is not essential.

We define \(W(u_1, \ldots, u_n) = \begin{pmatrix} u_1 \\ u_1' \\ \vdots \\ u_n \\ u_n' \end{pmatrix} \)
Note that \(P(z) = \left(\begin{array}{ccc} 0 & 1 & 1 \\ 0 & 0 & 0 \\ z & -z \end{array} \right) \). So \(\chi P(z) = P(z) \).

So \(\frac{\partial}{\partial z} W + P(z)W = 0 \)

\[
W(z) = e^{-\int P(z)dz} W(z_0)
\]

The fundamental solution \(W_{\alpha}(z_0, z) = \delta(z-z_0) \).

\[\text{Power Series Solution.} \]

\[U''(z) + z U(z) = 0 \quad \text{Airy equation} \]

Try \(U(z) = 1 + \sum_{n=1}^{\infty} a_n z^n \quad \text{Call } a_0 = 1 \).

\[
2 \cdot 10 + 3 \cdot 2 a_2 z + 4 \cdot 3 a_3 z^2 + \ldots + z \left(a_3 + a_2 + a_1 + a_0 \right) = 0
\]

\[3 \cdot 2 a_3 + a_0 = 0, \quad 4 \cdot 3 a_4 + a_1 = 0, \quad 5 \cdot 4 a_5 + a_2 = 0, \quad 6 \cdot 5 a_6 + a_3 = 0 \]

\[\frac{a_{n+3}}{a_n} = -\frac{1}{(n+3)(n+2)} \]

\[U(0) = 1, \quad U'(0) = 0 \]

Note that \(U''(0) = 0 \)

\[U(x) = 1 - \frac{1}{3} x^2 + \frac{1}{5} x^3 - \frac{1}{7} x^4 + \frac{1}{9} x^5 - \frac{1}{11} x^6 - \ldots \]

continued on page (3 of 16)