
KH Computational Physics- 2021 Basic Numerical Algorithms

Random numbers &

high-dimensional integrals

It is very hard to implement a good random number generator because a sequence of trully

random numbers can not be generated by deterministic computers. Only pseudo-random

number generators can be coded. There are several excellent pseudo random number

generators available in various libraries, which give very satisfactory results in combination

with Monte Carlo methods or multidimensional integrations.

For every Monte Carlo application, it is crucial to use high quality random number

generator. In practice, it is best to select a few random number generators with a good

reputation, and make sure that results do not depend on the choice of a random number

generator. A good source of excellent random numbers are

• GNU Scientific Library (GSL).

– gsl rng mt19937 : a variant of the “Mersenne Twister” generator.

Kristjan Haule, 2021 –1–

KH Computational Physics- 2021 Basic Numerical Algorithms

– gsl rng ranlux389 : second generation ranlux algorithm developed by Lüscher.

– gsl rng taus2 : Tausworthe generator by L’Ecuyer.

• mkl library :

– VSL BRNG MT19937 : A Mersenne Twister pseudorandom number generator.

– VSL BRNG MT2203 : A set of 6024 Mersenne Twister pseudorandom number

generators.

– VSL BRNG SFMT19937 : A SIMD-oriented Fast Mersenne Twister pseudorandom

number generator.

Kristjan Haule, 2021 –2–

KH Computational Physics- 2021 Basic Numerical Algorithms

How do random number generators work?

The simplest and fastest random number generators, which are unfortunately not of very

high quality, are congruential algorithms

Ij+1 = aIj + c mod m. (1)

For more complicated and much better methods, see Numerical Recipes book. If a fast

generator of reasonable quality is desired, one can use standard methods implemented in

c, such as drand48 and srand48 defined in cstdlib.

There alo exist very sophisticated tests for ”good” randomness or random number

generators, and very few random numbers generators pass sophisticated tests. A nice

collection of these tests is available at

http://www.phy.duke.edu/˜rgb/General/dieharder.php. A two

simplest examples of tests are:

• random walk

• distribution of points on a square

Random walk: It is clear that the distance a particle can travel by performing N random
Kristjan Haule, 2021 –3–

http://www.phy.duke.edu/~rgb/General/dieharder.php

KH Computational Physics- 2021 Basic Numerical Algorithms

steps is proportional to
√
N . Most of good random number generators ”obey” that

constrain. To test that property, we can release a random walker from origin, and measure

the distance it reaches from the origin after i steps, where i is any number between 1 and

large N . It is clear than a single random walker will not end up
√
N from the origin. To

avoid fluctuations we need to repeat random walk many times or release a lot of random

walkers and make an average over these random walkers. This should give us a perfect

square-root curve.

Distribution of points on a square: This test is very easy to implement. Let’s take two

succesive random numbers as a point in 2D space (x, y). We can plot a large number of

such points on a screen, and if one sees any patter in the plot, the generator is very bad.

Kristjan Haule, 2021 –4–

KH Computational Physics- 2021 Basic Numerical Algorithms

Multidimensional integration

Multidimensional numeric integration in more than 4 dimensions is more appropriate for

Monte-Carlo than one-dimensional quadratures. If the function is smooth enough, or we

know how to transform integral to make it smooth, the integration can be performed with

MC. The reason for MC success is that it’s error, according to central limit theorem, is

always proportional to 1/
√
N independent of dimension.

The error of one dimensional quadratures can be estimated: If the number of points used in

each dimension is N1, the number of all points used in d dimensions is N = (N1)
d. The

error for trapezoid rule was estimated to 1/(N1)
2 therefore the error in d dimensions is

1/N2/d. It is therefore clear than for d = 4 the Monte-Carlo error and the trapezoid-rule

error are equal.

Kristjan Haule, 2021 –5–

KH Computational Physics- 2021 Basic Numerical Algorithms

For more or less flat functions, the integration is straightforward

∫
fdV ≈ V 〈f〉 ± V

√
〈f2〉 − 〈f〉2

N
(2)

here

〈f〉 ≡ 1

N

N−1∑

i=0

f(xi) (3)

〈f2〉 ≡ 1

N

N−1∑

i=0

f2(xi) (4)

If the function f is rapidly varying, the variance is going to be large and precision of the

integral vary bad. The scaling 1/
√
N is very bad! If one has a lot of computer time and

patience, one might still try to use this method, because it is so straighforward to implement.

If the region V of the integral is complicated and is hard to generate distribution of points in

volume V , one can just find a larger and simpler volume W which contains volume V .

Then one samples over W and defines the function f to be zero outside V . Of course the

error will increase because number of ”good” points is smaller.

Kristjan Haule, 2021 –6–

KH Computational Physics- 2021 Basic Numerical Algorithms

Importance sampling

Usefulness of Monte Carlo becomes more appealing when importance sampling strategy is

implemented. Of course one needs to know something about the function to implement the

strategy, but one is rewarded with much higher accuracy.

It is simplest to ilustrate the idea in 1D. If one knows that function f(x) to be integrated is

mostly proportional to another function w(x) in the region where the integral contains most

of the weight, we might want to rewrite the integral

∫
f(x)dx =

∫
f(x)

w(x)
w(x)dx (5)

If weight function w(x) is a simple analytic function, which can be integrated analytically,

and obeys the following constrains

• w(x) > 0 for every x

•

∫
w(x)dx = 1

Kristjan Haule, 2021 –7–

KH Computational Physics- 2021 Basic Numerical Algorithms

we can define

W (x) =

∫ x

w(t)dt → dW (x) = w(x)dx (6)

and rewrite

∫
f(x)dx =

∫
f(x)

w(x)
dW (x) =

∫
f(x(W))

w(x(W))
dW →

〈
f(x(W))

w(x(W))

〉

W uniform ∈[0,1]

If the function f/w on mesh W is reasonably flat, it can be efficiently integrated by MC.

The error is now proportional to

√
〈(f/w)2〉−〈f/w〉2

N and is therefore greatly reduced.

To implement the algorith, we generate uniform random numbers r in the interval

r ∈ [0, 1] which correspond to variable W . We can solve the equaton for x = W−1(r) to

get x and use it to evaluate f(x)/w(x). The random numbers are therefore uniformly

distributed on mesh W while they are non-uniformly distributed on mesh x.

Kristjan Haule, 2021 –8–

KH Computational Physics- 2021 Basic Numerical Algorithms

This can also be writtens as
〈
f(x)

w(x)

〉

P (x)
dx =w(x)

because the distribution of points x is
dP
dx = dP

dW
dW
dx and since distribution

dP
dW is uniform,

and dW
dx = w(x), we have dP

dx = w(x).

The archaic example is the exponential weight function

w(x) =
1

λ
e−x/λ for x > 0 (7)

This is equivalent to our exponentially distributed mesh points. Most of them are going to be

close to 0 and only few at large x.

The integral is W (x) = 1− e−x/λ which gives for the inverse x = −λ ln(1−W). The

integral

∫ ∞

0

f(x)dx =

∫ 1

0

f(−λ ln(1−W))

w(−λ ln(1−W))
dW =

∫ 1

0

f(−λ ln(1−W))
λdW

1−W
(8)

Kristjan Haule, 2021 –9–

KH Computational Physics- 2021 Basic Numerical Algorithms

is easily evaluated with MC if f(x) is exponentially falling function.

∫ ∞

0

f(x)dx→ 〈λf(−λ ln(1−W))

1−W
〉W uniform∈[0,1] (9)

Since
dP
dW = 1 (W is uniformly distributed), the probability for x is

dP
dx = w(x), therefore

x is exponentially distributed random number.

We could also write

∫ ∞

0

f(x)dx→
〈

f(x)
e−x/λ

λ

〉

dP
dx =e−x/λ/λ

(10)

Another very usefull weight function is Gaussian distribution

w(x) =
1√
2πσ2

e
(x−x0)2

2σ2 (11)

How do we get random number x to be distributed according to the above distribution? The

integral gives erf function and its inverse is not simple to evaluate.

The trick is to use two random numbers to get Gaussian distrbution. Consider the following

Kristjan Haule, 2021 –10–

KH Computational Physics- 2021 Basic Numerical Algorithms

algorithm

x1 = x0 +
√
−2σ2 ln r1 cos(2πr2) (12)

x2 = x0 +
√
−2σ2 ln r1 sin(2πr2) (13)

The distribution of r1 and r2 is uniform in the interval [0, 1]. The distribution of x1 and x2 is

d2P

dx1dx2
=

d2P

dr1dr2

∣∣∣∣
∂(r1, r2)

∂(x1, x2)

∣∣∣∣ =
1√
2π

e−(x1−x0)
2/2 1√

2π
e−(x2−x0)

2/2
(14)

therefore Gaussian. In this way, we can obtaine x to be distributed gaussian, and we can

evaluate

∫
f(x)dx =

〈
f(x)

1√
2πσ2

e−(x−x0)2/(2σ2)

〉

dP
dx = 1√

2πσ2
e
(x−x0)2

2σ2

(15)

Kristjan Haule, 2021 –11–

KH Computational Physics- 2021 Basic Numerical Algorithms

What is the best choice for weight function w?

If function f is positive, clearly best w is just proportional to f . What if f is not positive

everywhere? It turns out that the best choice is absolute value of f , i.e.,

w =
|f |∫
|f |dV (16)

The proof is simple. The MC importance sampling evaluates

∫
fdV =

∫
f

w
wdV ≈

〈
f

w

〉
±

√
〈(f

w)2〉 − 〈 fw 〉2
N

(17)

and the error is minimal when

δ

(
〈(f
w
)2〉 − 〈 f

w
〉2 + λ(

∫
wdV − 1)

)
= 0 (18)

δ

(∫
f2

w2
wdV −

(∫
f

w
wdV

)2

+ λ(

∫
wdV − 1)

)
= 0 (19)

∫ (
f2

w2
− λ

)
dV = 0 → w ∝ |f | (20)

Kristjan Haule, 2021 –12–

KH Computational Physics- 2021 Basic Numerical Algorithms

If we know a good approximation for function f , we can use this information to sample the

same function f to higher accuracy with importance sampling. The solution can thus be

improved iteratively. This idea is implemented in Vegas algorithm (see below).

There is another set of algorithms to improve precision of Monte Carlo sampling. The idea

is to divide the volume into smaller subregions and check in each subregion how rapidly is

the function f varying in each subregion. The quantitative estimation can be the variance of

the function is each subregion
√
〈f2〉 − 〈f〉2. The idea is to increase the number of

points in those regions where variance is big. The algorithm is called Stratified Sampling

and is used in Miser integration routine. The idea seems simple and powerful, but is not

very usefull for high-dimensional integration because the number of subregions grows

exponentially with the number of dimensions therefore it is usefull only if we have some idea

how to constract small number of subregions where variance of f is large. This last trick is

also used in Vegas algorithm which is probabbly the best algorithm available at the moment.

Kristjan Haule, 2021 –13–

KH Computational Physics- 2021 Basic Numerical Algorithms

Vegas

Peter Lepage, JOURNAL OF COMPUTATIONAL PHYSICS 27,

192-203 (1978).

The Vegas method is primary based on the importance sampling algorithm with the above

mentioned self-adapting strategy. The basic idea is to use a separable weigh function. Thus

instead of complicated w(x, y, z, · · ·) one uses an ansatz w = w1(x)w2(y)w3(z) · · ·.
The optimal separable weigh functions are

w1(x) ∝
[∫

dy

∫
dz · · · |f(x, y, z, · · ·)|2

w1(x)w2(y)w3(z) · · ·

]
(21)

in close resembles with the 1-dimensional case above.

The power of Vegas is that by iteration, it can resolve any divergent point which is

separable, i.e., it is parallel to any axis. However, when the divergency is along diagonal

Vegas is similar to usual MC sampling. Note that separable ansatz avoids the explosion of

stratified regions, which scale as Kd, while separable ansatz scales as K × d. (K is

number of points in one dimension, i.e., typically K ≈ 102, d ≈ 10→ ZettaByte versus

KiloByte).
Kristjan Haule, 2021 –14–

KH Computational Physics- 2021 Basic Numerical Algorithms

The algorithm starts with the separable weight function, which we will call a grid, gi(x). We

want to evaluate
∫ 1

0

dg1

∫ 1

0

dg2 · · · f(g1, g2, · · ·) =
∫ 1

0

dx

∫ 1

0

dy · · · f(g1(x), g2(y), g3(z), · · ·)
dg1
dx

dg2
dy
· · · dxdydz · · · (22)

Note that g1 depends only on x, and g2 only on y, so that the Jacobian of such separable

set of functions is just the product of all derivatives.

We first start with the grid functions gi(x) = x, so that the integration at the first iteration is

equivalent to the usual Monte Carlo sampling.

We generate a few thousand sets of random points (x, y, z) and evaluate f on these

points. During the sampling we evaluate the integral

〈f〉 =
∑

x,y,z

f(g1(x), g2(y), g3(z))
dg1
dx

dg2
dy

dg3
dz

, (23)

Note that random points are uniformly distributed on mesh x (x ∈ [0, 1)), on mesh y, etc,

therefore the unit volume
∫
dxdy · · · = 1.

Kristjan Haule, 2021 –15–

KH Computational Physics- 2021 Basic Numerical Algorithms

We also save the value of the function on a grid, namely,

f1(x) =
∑

y,z

|f(g1(x), g2(y), g3(z))
dg1
dx

dg2
dy

dg3
dz
|2 (24)

f2(y) =
∑

x,z

|f(g1(x), g2(y), g3(z))
dg1
dx

dg2
dy

dg3
dz
|2 (25)

f3(z) =
∑

x,y

|f(g1(x), g2(y), g3(z))
dg1
dx

dg2
dy

dg3
dz
|2 (26)

and then we normalize these projected functions

f̃i(x) =
fi(x)∫ 1

0
fi(x)dx

, (27)

so that they map the interval [0, 1]→ [0, 1].

Next we need to construct the refined grid functions gi(x) using the new sampled

information (f̃i(x)). Just like in 1D case above
∫

f̃(g)dg =

∫
f̃(g(x))

dg

dx
dx, (28)

Kristjan Haule, 2021 –16–

KH Computational Physics- 2021 Basic Numerical Algorithms

we would like to have

f̃(g(x))
dg

dx
= const (29)

so that each interval of the grid contributes the same amount to the integral.

To determine the new grid gl, we will determine the grip points numerically so that

∫ 1

0

f̃(gold)dgold = I (30)

∫ gnew
l

gnew
l−1

f̃(gold)dgold =
I

Ng
(31)

where Ng is the number of gridpoints. Hence, we require that there is exactly the same

weight between each two consecutive points (between g0 and g1, and between g1 and

g2,....).

Once we have a new grid, we can restart the sampling of the integral of f , just like in

Eqs. 23 to 26, using gnew . We generate again a few thousand random set of points

(x, y, z) and obtain f̃i(x) functions. We then repeat this procedure approximately

10-times, and we can slightly increase the number of random points each time, as the grid

functions becomes more are more precise. At the end, we can run a single long run with
Kristjan Haule, 2021 –17–

KH Computational Physics- 2021 Basic Numerical Algorithms

10-times longer sampling, to reduce sampling error-bar.

In practice, we will implement a few more tricks, which make the algorithm stable.

First, when we compute the separable function f̃i(x), we will smoothen it, because we

want to avoid accessive discontinuities due to finite number of random points. We will just

average over nearest neighbors

f̃i ←
f̃i−1 + f̃i + f̃i+1

3
(32)

Note, be careful at the endpoints, where you need to average over two points only.

Second, we will not use f̃(x) in Eq. 31 directly, but we will first transform it slightly. Namely,

if f̃(x) is very small (very large) in some regions, we will keep transformed f̃(x) less small

(less large). A good transformation is provided by the following function

t(r) =

(
r − 1

log(r)

)3/2

(33)

Note that t(1) = 1 and at small r it increases very fast t(r) ≈ (1/ log(1/r))3/2, while

at large r it approaches t(r) ≈ 3
4r, which is less that r.

We will then use t(f̃) instead of f̃ when we build the new grid gnew(x).
Kristjan Haule, 2021 –18–

KH Computational Physics- 2021 Basic Numerical Algorithms

Finally, for the grid g(x) we will have the grid of points distributed between [0, 1] so that

x0 = 1
N , x1 = 2

N , · · ·, xN−2 = N−1
N , xN−1 = 1. We know that g(x = 0) = 0,

hence we do not need to save pont x = 0, but we need to be careful when interpolating at

the point x0. For such equidistant mesh, it is clear that given a point x ∈ [0, 1], we can

compute i = int(xN), and then we know that x appears between xi−1 and xi, and

linear interpolation gives

g(x) = gi−1 + (gi − gi−1)
(x− i/N)

1/N
(34)

g(x) = g0 xN if i = 0 (35)

Finally, we want to discuss the calculation of the error and confidence in the result. We will

perform M outside iterations (which update the grid). Each such iteration will consist of ni

function evaluations (of the order of few thousand to ten thousand). From all these

calculations M ∗ n we want to evaluate the best estimate of the integral, and its estimation

for the error.

Kristjan Haule, 2021 –19–

KH Computational Physics- 2021 Basic Numerical Algorithms

At each iteration, we will sample the following qualities:

〈fw〉i =
1

ni

ni∑

j=1

f(g1(xj), g2(yj), g3(zj))
dg1
dx

(xj)
dg2
dy

(yj)
dg3
dz

(zj) (36)

〈f2
w〉i =

1

ni

ni∑

j=1

(
f(g1(xj), g2(yj), g3(zj))

dg1
dx

dg2
dy

dg3
dz

)2

(37)

Then the estimation for the variance-square of the MC-sampling is

σ2
i =
〈f2

w〉i − 〈fw〉
2
i

ni − 1
(38)

Note that the variance of the sampled function is

√
〈f2

w〉i − 〈fw〉
2
i , which is approaching

a constant when the number of sampled points ni goes to infinity. However, the variance of

the MC-sampling is σi ∝ 1√
ni

, as expected.

From all accumulated evaluations of the function (in M iterations), we can construct the best

estimate of the integral. Naively, we would just calculate 1/M
∑

i 〈fw〉i. However, at the

first few iterations the error was way bigger than in the last iteration, and therefore we want

Kristjan Haule, 2021 –20–

KH Computational Physics- 2021 Basic Numerical Algorithms

to penalize those early estimates, which were not so good. We achieve that by

Ibest =

∑M
i=1

〈fw〉i
σ2
i∑M

i=1
1
σ2
i

(39)

Similarly, the error does not sum up, but is rather smaller than the smallest error (in the last

iteration). We have

1

σ2 best
=

M∑

i=1

1

σ2
i

(40)

and finally the χ2 can be estimated by

χ2 =
1

M − 1

M∑

i=1

(〈fw〉i − Ibest)
2

σ2
i

(41)

The jupyter notebook implementation of Veags is available on the website

http://www.physics.rutgers.edu/˜haule/509/MC.html.

Kristjan Haule, 2021 –21–

http://www.physics.rutgers.edu/~haule/509/MC.html

KH Computational Physics- 2021 Basic Numerical Algorithms

The algorithm Vegas is also efficiently implemented in GNU SCIENTIFIC LIBRARY

(http://www.gnu.org/software/gsl/).

For all major distributions of linux and also Windows simulation of linux (cigwin) the GNU

SCIENTIFIC LIBRARY comes precompiled (rpm package). For mac, brew install

gsl should work.

Unfortunately, the code is written in C and not C++. However, it is coded in modular way so

that it is simple to write wrapper classes which hide the details of calls and data structures

used. For details of the gsl library, see

http://www.gnu.org/software/gsl/manual/html_node/Monte-Carlo-Integration.html.

The wrapper is implemented in

http://www.physics.rutgers.edu/˜haule/509/src_numerics/Random/Vegas/.

We will test MC by evaluating the three-dimensional divergent function

f(kx, ky, kz) =
1

π3

1

1− cos kx cos ky cos kz
(42)

It is clear that this function should be simple for Vegas since divergencies are only in

corners and not along diagonals.

Kristjan Haule, 2021 –22–

http://www.gnu.org/software/gsl/
http://www.gnu.org/software/gsl/manual/html_node/Monte-Carlo-Integration.html
http://www.physics.rutgers.edu/~haule/509/src_numerics/Random/Vegas/

KH Computational Physics- 2021 Basic Numerical Algorithms

-2

0

2

-2

0

2

0

1

2

3

4

5

-2

0

2

Untitled−1 1

Figure 1: Plot of the two dimensional analog of the function f(kx, ky, kz).

Get familiar with gnu scientific library and check the implementation of the wrapper classes.

• Using the simple Monte-Carlo sampling and half a milion function evaluations, one gets

error of the order of 2%.

• The Miser algorithm which uses Stratified sampling improves the accuracy for almost

Kristjan Haule, 2021 –23–

KH Computational Physics- 2021 Basic Numerical Algorithms

one order of magnitude using the same number of function evaluations.

• Finally, Vegas further improves the accuracy for additional order od magnitude using

even fewer function evaluations (100000 for warmup and 100000 for second call).

plain ================== vegas warm-up ==================

result = 1.41221 result = 1.39267

sigma = 0.0134359 sigma = 0.00341041

exact = 1.3932 exact = 1.3932

error = 0.0190048 = 1.41448 sigma error = -0.000531339 = 0.155799 sigma

miser ================== converging...

result = 1.39132 result = 1.39328 sigma=0.00036248 chisq/dof=1.5

sigma = 0.00346056 vegas final ==================

exact = 1.3932 result = 1.39328

error = -0.00188235 = 0.543944 sigma sigma = 0.00036248

exact = 1.3932

error = 7.74556e-05 = 0.213682 sigma

Kristjan Haule, 2021 –24–

KH Computational Physics- 2021 Basic Numerical Algorithms

Diffusion-limited aggregation

Random number generators can also be used in direct simulation: some processes of

which we do not know the details and we model them by random generator.

An example of direct simulation is Diffusion-limited aggregation (DLA). It is a way to form

objects with a special beauty. It takes place in non-living (mineral deposition, snowflake

growth, lightning paths) or living (corals) nature - or within computers.

• Diffusion can be modeled by random motion (aka Brownian motion)

• When particles have the possibility to attract each other and stick together, they may

form aggregates.

DLA is one of the most important models of fractal growth. It was invented by two

physicists, T.A. Witten and L.M. Sander , in 1981. The growth rule is remarkably simple. We

start with an immobile seed on the plane. A walker is then launched from a random position

far away and is allowed to diffuse. If it touches the seed, it is immobilized instantly and

becomes part of the aggregate. We then launch similar walkers one-by-one and each of

them stops upon hitting the cluster. After launching a few hundred particles, a cluster with

intricate branch structures results.

Kristjan Haule, 2021 –25–

KH Computational Physics- 2021 Basic Numerical Algorithms

We can assign dimensionality to DLA cluster just like to a fractal. The definition is

m(r) ∝ rd (43)

The fractal dimensionality of cluster in two dimensions is always less than 2. The objects

which mass is increasing slower than r2 must contain cracks or holes and the size of

cracks and holes must increase with r.

Figure 2: Typical DLA cluster

Kristjan Haule, 2021 –26–

KH Computational Physics- 2021 Basic Numerical Algorithms

10 100

radius

100

1000

10000

m
a
s
s

m=C R
1.68

Figure 3: Mass of the DLA cluster as a function of radius R. The dimensionality of the

cluster is appoximately 1.68.

Kristjan Haule, 2021 –27–

KH Computational Physics- 2021 Basic Numerical Algorithms

class Lattice{

int N; // size of the lattice is NxN

std::vector<std::vector<bool> > site; // matrix of positions, if it is false, it is empty

std::pair<int,int> tpos, ppos; // temporary and previous position of the particle

std::pair<double,double> r0; // average position <vec{r}>

double r2; // average <rˆ2>

static const int MAXRGB = 65535;

int Nclust; // number of points in the cluster

public:

Lattice(int N_);

void ReleaseNew();

int MakeStep();

};

Lattice::Lattice(int N_): N(N_), site(N), r0(0,0), r2(0), Nclust(0)

{

for (int i=0; i<site.size(); i++){

site[i].resize(N);

for (int j=0; j<site[i].size(); j++){

site[i][j]=false; // sites are empty at the beginning

}

}

site[N/2][N/2]=true;// We put first point in the middle of the system

};

void Lattice::ReleaseNew()

{ // Random walker is released from the boundary

do{

int istart = static_cast<int>(drand48()*4*N); // boundary size is 4*N

switch(istart/N){ // which face of a square the particle is put to?

case 0: tpos = std::make_pair(istart,0); break;

case 1: tpos = std::make_pair(N-1,istart%N); break;

case 2: tpos = std::make_pair(istart%N,N-1); break;

case 3: tpos = std::make_pair(0,istart%N); break;

}

// we have random site on the bundary. But is it empty?

} while (site[tpos.first][tpos.second]);// just make sure that the site is empty

Kristjan Haule, 2021 –28–

KH Computational Physics- 2021 Basic Numerical Algorithms

}

int Lattice::MakeStep()

{// Return codes: 1 - particle glued

// 0 - particle moved

std::pair<int,int> newpos(tpos);

int ipos = static_cast<int>(drand48()*4); // particle can go in 4 directions: up,down,left,right

switch(ipos){// Here we use peridoci boundary conditions in order that particle can not escape too fast

case 0: newpos.first = (tpos.first+1)%N; break; // right

case 1: newpos.second = (tpos.second+1)%N; break; // up

case 2: newpos.first = tpos.first>0 ? (tpos.first-1) : N-1; break; // left

case 3: newpos.second = tpos.second>0 ? (tpos.second-1) : N-1; break; // down

}

// Checking weather particle can be glued!

// Here we do not take periodic boundary conditions since they put too many particles on the boundary

bool r_neighbor = newpos.first<N-1 && site[newpos.first+1][newpos.second];

bool u_neighbor = newpos.second<N-1 && site[newpos.first][newpos.second+1];

bool l_neighbor = newpos.first>0 && site[newpos.first-1][newpos.second];

bool d_neighbor = newpos.second>0 && site[newpos.first][newpos.second-1];

if (r_neighbor || u_neighbor || l_neighbor || d_neighbor){ // If particle can be glued

// Particle just glued

site[newpos.first][newpos.second]=true; // lattice is now occupied

r0.first += newpos.first-N/2;

r0.second += newpos.second-N/2;

r2 += sqr(newpos.first-N/2)+sqr(newpos.second-N/2); // average rˆ2

Nclust++; // number of particles in DLA cluster increases

return 1;

}

ppos = tpos;

tpos = newpos; // update position of the walker

return 0;

}

Kristjan Haule, 2021 –29–

