
Introduction to
Scientific Computing

Many excellent resources on the web
>> google: "learn python"
some good example:
http://www.diveintopython.org/toc/index.html
http://www.scipy.org/Documentation

Adjusted from:
 http://www.nanohub.org/resources/?id=99
Original Authors are: Eric Jones and Travis Oliphant

Wednesday, February 20, 13

http://www.diveintopython.org/toc/index.html
http://www.diveintopython.org/toc/index.html
http://www.scipy.org/Documentation
http://www.scipy.org/Documentation
http://www.nanohub.org/resources/?id=99
http://www.nanohub.org/resources/?id=99

Topics

• Introduction to Python
• Numeric Computing
• SciPy and its libraries

Wednesday, February 20, 13

What Is Python?
ONE LINER

Python is an interpreted programming language that allows you to do
almost anything possible with a compiled language (C/C++/Fortran)
without requiring all the complexity.

PYTHON HIGHLIGHTS

• Automatic garbage
collection

• Dynamic typing

• Interpreted and interactive

• Object-oriented

• “Batteries Included”

• Free

• Portable

• Easy to Learn and Use

• Truly Modular

Wednesday, February 20, 13

Who is using Python?
NATIONAL SPACE TELESCOPE
LABORATORY

ENTHOUGHT

LAWRENCE LIVERMORE
NATIONAL LABORATORIES

INDUSTRIAL LIGHT AND MAGIC

Data processing and calibration for
instruments on the Hubble Space
Telescope.

REDHATPAINT SHOP PRO 8

WALT DISNEY

Anaconda, the Redhat Linux installer
program, is written in Python.

Scripting and extending parallel
physics codes. pyMPI is their doing.

Scripting Engine for JASC
PaintShop Pro 8 photo-editing software

Digital Animation Digital animation development
environment.

CONOCOPHILLIPS

Oil exploration tool suite Geophysics and Electromagnetics
engine scripting, algorithm
development, and visualization

Wednesday, February 20, 13

Language Introduction

Wednesday, February 20, 13

Interactive Calculator
adding two values
>>> 1 + 1
2
setting a variable
>>> a = 1
>>> a
1
checking a variables type
>>> type(a)
<type 'int'>
an arbitrarily long integer
>>> a = 1203405503201
>>> a
1203405503201L
>>> type(a)
<type 'long'>
>>>> type(a).__name__=='long'
True
>>>> print type.__doc__
type(name, bases, dict)

The four numeric types in Python on
32-bit architectures are:
 integer (4 byte)
 long integer (any precision)
 float (8 byte like C’s double)
 complex (16 byte)
The Numeric module, which we will
see later, supports a larger number
of numeric types.

real numbers
>>> b = 1.2 + 3.1
>>> b
4.2999999999999998
>>> type(b)
<type 'float'>
complex numbers
>>> c = 2+1.5j
>>> c
(2+1.5j)

Wednesday, February 20, 13

Complex Numbers

>>> a=1.5+0.5j
>>> abs(a)
1.5811388

CREATING COMPLEX NUMBERS

to extract real and im
component
>>> a=1.5+0.5j
>>> a.real
1.5
>>> a.imag
0.5

EXTRACTING COMPONENTS

ABSOLUTE VALUE

Use "j" or "J" for imaginary
part. Create by "(real+imagj)",
or "complex(real, imag)" .
>>> 1j * 1J
(-1+0j)
>>> 1j * complex(0,1)
 (-1+0j)
>>> (1+2j)/(1+1j)
(1.5+0.5j)

Wednesday, February 20, 13

Strings

using double quotes
>>> s = “hello world”
>>> print s
hello world
single quotes also work
>>> s = ‘hello world’
>>> print s
hello world

>>> s = “12345”
>>> len(s)
5

CREATING STRINGS

concatenating two strings
>>> “hello “ + “world”
‘hello world’

repeating a string
>>> “hello “ * 3
‘hello hello hello ’

STRING OPERATIONS

STRING LENGTH

FORMAT STRINGS
the % operator allows you
to supply values to a
format string. The format
string follows
C conventions.
>>> s = “some numbers:”
>>> x = 1.34
>>> y = 2
>>> s = “%s %f, %d” %
(s,x,y)
>>> print s
some numbers: 1.34, 2

Wednesday, February 20, 13

The strings

>>> s = “hello world”
>>> s.split()
[‘hello’, ‘world’]

>>> ‘ ‘.join(s.split())
hello world

>>> s.replace(’world’ ,’Mars’)
‘hello Mars’

strip whitespace
>>> s = “\t hello \n”
>>> s.strip()
‘hello’

Regular expressions:
re.match(regex,subject)
re.search(regexp,subject)
re.group()
re.groups()
re.sub(regex, replacement,sub)

>>import re
>>s=”The time is 12:30pm!”
>>m=re.match(".*time is (.*)pm", s))
>>m.group(1)
'12:30'
>>m.groups()
)'12:30',(
>>m=re.search(r'time.*(\d+:\d+)pm',s)
>>m.group(1)
'12:30'
>>re.sub(r'\d+:\d+','2:10',s)
'The time is 2:10pm!'

Wednesday, February 20, 13

Multi-line Strings

triple quotes are used
for mutli-line strings
>>> a = ”””hello
... world”””
>>> print a
hello
world

multi-line strings using
“\” to indicate
continuation
>>> a = “hello ” \
... “world”
>>> print a
hello world

including the new line
>>> a = “hello\n” \
... “world”
>>> print a
hello
world

Wednesday, February 20, 13

List objects

>>> l = [10,11,12,13,14]
>>> print l
[10, 11, 12, 13, 14]

LIST CREATION WITH BRACKETS

simply use the + operator
>>> [10, 11] + [12,13]
[10, 11, 12, 13]

CONCATENATING LIST

REPEATING ELEMENTS IN LISTS

the range method is helpful
for creating a sequence
>>> range(5)
[0, 1, 2, 3, 4]

>>> range(2,7)
[2, 3, 4, 5, 6]

>>> range(2,7,2)
[2, 4, 6]

the multiply operator
does the trick.
>>> [10, 11] * 3
[10, 11, 10, 11, 10, 11]

range(start, stop, step)

Wednesday, February 20, 13

Indexing

list
indices: 0 1 2 3 4
 >>> l = [10,11,12,13,14]
 >>> l[0]
 10

RETRIEVING AN ELEMENT

The first element in an
array has index=0 as
in C. Take note Fortran
programmers!

NEGATIVE INDICES
negative indices count
backward from the end of
the list.

indices: -5 -4 -3 -2 -1
 >>> l = [10,11,12,13,14]

 >>> l[-1]
 14
 >>> l[-2]
 13

SETTING AN ELEMENT
>>> l[1] = 21
>>> print l
[10, 21, 12, 13, 14]

OUT OF BOUNDS
>>> l[10]
Traceback (innermost last):
File "<interactive input>",line 1,in ?
IndexError: list index out of range

Wednesday, February 20, 13

More on list objects

use in or not in
>>> l = [10,11,12,13,14]
>>> 13 in l
1
>>> 13 not in l
0

DOES THE LIST CONTAIN x ?

LIST CONTAINING MULTIPLE
TYPES

list containing integer,
string, and another list.
>>> l = [10,’eleven’,[12,13]]
>>> l[1]
‘eleven’
>>> l[2]
[12, 13]

use multiple indices to
retrieve elements from
nested lists.
>>> l[2][0]
12

>>> len(l)
3

LENGTH OF A LIST

use the del keyword
>>> del l[2]
>>> l
[10,’eleven’]

DELETING OBJECT FROM LIST

Wednesday, February 20, 13

Slicing

indices: 0 1 2 3 4
 >>> l = [10,11,12,13,14]
 # [10,11,12,13,14]
 >>> l[1:3]
 [11, 12]

negative indices work also
>>> l[1:-2]
[11, 12]
>>> l[-4:3]
[11, 12]

SLICING LISTS
omitted boundaries are
assumed to be the beginning
(or end) of the list.

grab first three elements
>>> l[:3]
[10,11,12]
grab last two elements
>>> l[-2:]
[13,14]

var[lower:upper]
Slices extract a portion of a sequence by specifying a lower and upper bound.
The extracted elements start at lower and go up to, but do not include, the upper
element. Mathematically the range is [lower,upper).

OMITTING INDICES

Wednesday, February 20, 13

A few methods for list objects

some_list.reverse()

Add the element x to the end
of the list, some_list.

some_list.sort(cmp)

some_list.append(x)

some_list.index(x)

some_list.count(x)

some_list.remove(x)

Count the number of times x
occurs in the list.

Return the index of the first
occurrence of x in the list.

Delete the first occurrence of x from
the list.

Reverse the order of elements in
the list.

By default, sort the elements in ascending
order. If a compare
function is given, use it to sort
the list.

Wednesday, February 20, 13

List methods in action

>>> l = [10,21,23,11,24]

add an element to the list
>>> l.append(11)
>>> print l
[10,21,23,11,24,11]

how many 11s are there?
>>> l.count(11)
2

where does 11 first occur?
>>> l.index(11)
3

remove the first 11
>>> l.remove(11)
>>> print l
[10,21,23,24,11]

sort the list
>>> l.sort()
>>> print l
[10,11,21,23,24]

reverse the list
>>> l.reverse()
>>> print l
[24,23,21,11,10]

Wednesday, February 20, 13

Mutable vs. Immutable

Mutable objects, such as
lists, can be changed
in-place.

insert new values into list
>>> l = [10,11,12,13,14]
>>> l[1:3] = [5,6]
>>> print l
[10, 5, 6, 13, 14]

MUTABLE OBJECTS IMMUTABLE OBJECTS
Immutable objects, such as
strings, cannot be changed
in-place.

try inserting values into
a string
>>> s = ‘abcde’
>>> s[1:3] = ‘xy’
Traceback (innermost last):
File "<interactive input>",line 1,in ?
TypeError: object doesn't support
 slice assignment

here’s how to do it
>>> s = s[:1] + ‘xy’ + s[3:]
>>> print s
'axyde'

The cStringIO module treats
strings like a file buffer
and allows insertions. It’s
useful when working with
large strings or when speed
is paramount.

Wednesday, February 20, 13

Dictionaries
Dictionaries store key/value pairs. Indexing a dictionary by a key returns the
value associated with it.

create an empty dictionary using curly brackets
>>> record = {}
>>> record[‘first’] = ‘Jmes’
>>> record[‘last’] = ‘Maxwell’
>>> record[‘born’] = 1831
>>> print record
{'first': 'Jmes', 'born': 1831, 'last': 'Maxwell'}
create another dictionary with initial entries
>>> new_record = {‘first’: ‘James’, ‘middle’:‘Clerk’}
now update the first dictionary with values from the new one
>>> record.update(new_record)
>>> print record
{'first': 'James', 'middle': 'Clerk', 'last':'Maxwell', 'born':
1831}

DICTIONARY EXAMPLE

Wednesday, February 20, 13

A few dictionary methods

some_dict.clear()

some_dict.copy()

some_dict.has_key(x)

some_dict.keys()

some_dict.values()

some_dict.items()

Remove all key/value pairs from
the dictionary, some_dict.

Create a copy of the dictionary

Test whether the dictionary
contains the key x.

Return a list of all the keys in the
dictionary.

Return a list of all the values in
the dictionary.

Return a list of all the key/value
pairs in the dictionary.

Wednesday, February 20, 13

Dictionary methods in action

>>> d = {‘cows’: 1,’dogs’:
5, ... ‘cats’: 3}

create a copy.
>>> dd = d.copy()
>>> print dd
{'dogs':5,'cats':3,'cows': 1}

test for chickens.
>>> d.has_key(‘chickens’)
0

get a list of all keys
>>> d.keys()
[‘cats’,’dogs’,’cows’]

get a list of all values
>>> d.values()
[3, 5, 1]

return the key/value pairs
>>> d.items()
[('cats', 3), ('dogs', 5),
 ('cows', 1)]

clear the dictionary
>>> d.clear()
>>> print d
{}

Wednesday, February 20, 13

Tuples
Tuples are a sequence of objects just like lists. Unlike lists, tuples are immutable
objects. While there are some functions
and statements that require tuples, they are rare. A good rule of thumb is to use lists
whenever you need a generic sequence.

tuples are built from a comma separated list enclosed by ()
>>> t = (1,’two’)
>>> print t
(1,‘two’)
>>> t[0]
1
assignments to tuples fail
>>> t[0] = 2
Traceback (innermost last):
File "<interactive input>", line 1, in ?
TypeError: object doesn't support item assignment

TUPLE EXAMPLE

Wednesday, February 20, 13

Assignment

>>> x = [0, 1, 2]

Assignment creates object references.

x

y
y = x cause x and y to point
at the same list
>>> y = x

changes to y also change x
>>> y[1] = 6
>>> print x
[0, 6, 2]

x

y

re-assigning y to a new list
decouples the two lists
>>> y = [3, 4]

x

y

Wednesday, February 20, 13

Multiple assignments
creating a tuple without
()
>>> d = 1,2,3
>>> d
)1, 2, 3(

multiple assignments
>>> a,b,c = 1,2,3
>>> print b
2

multiple assignments from a
tuple
>>> a,b,c = d
>>> print b
2

also works for lists
>>> a,b,c = [1,2,3]
>>> print b
2

Wednesday, February 20, 13

If statements

if/elif/else provide conditional execution of
code blocks.

if <condition>:
 <statements>
elif <condition>:
 <statements>
else:
 <statements>

a simple if statement
>>> x = 10
>>> if x > 0:
... print 1
... elif x == 0:
... print 0
... else:
... print –1
... < hit return >
1

IF EXAMPLEIF STATEMENT FORMAT

Wednesday, February 20, 13

Test Values

• True means any non-zero number
or non-empty object

• False means not true: zero, empty object, or
None

empty objects evaluate false
>>> x = []
>>> if x:
... print 1
... else:
... print 0
... < hit return >
0

EMPTY OBJECTS

Wednesday, February 20, 13

For loops
For loops iterate over a sequence of objects.

>>> for i in range(5):
... print i,
... < hit return >
0 1 2 3 4

>>> l=[‘dogs’,’cats’,’bears’]
>>> accum = ‘’
>>> for item in l:
... accum = accum + item
... accum = accum + ‘ ‘
... < hit return >
>>> print accum
dogs cats bears

for <loop_var> in <sequence>:
 <statements>

TYPICAL SCENARIO

LOOPING OVER A STRING
>>> for i in ‘abcde’:
... print i,
... < hit return >
a b c d e

LOOPING OVER A LIST

Wednesday, February 20, 13

While loops

While loops iterate until a condition is met.

the condition tested is
whether lst is empty.
>>> lst = range(3)
>>> while lst:
... print lst
... lst = lst[1:]
... < hit return >
[0, 1, 2]
[1, 2]
[2]

while <condition>:
 <statements>

WHILE LOOP BREAKING OUT OF A LOOP
breaking from an infinite
loop.
>>> i = 0
>>> while 1:
... if i < 3:
... print i,
... else:
... break
... i = i + 1
... < hit return >
0 1 2

Wednesday, February 20, 13

Anatomy of a function

def add(arg0, arg1):
 a = arg0 + arg1
 return a

The keyword def
indicates the start
of a function.

A colon (:) terminates
the function definition.

Indentation is
used to indicate
the contents of
the function. It
is not optional,
but a part of the
syntax. An optional return statement specifies

the value returned from the function. If
return is omitted, the function returns the
special value None.

Function arguments are listed
separated by commas. They are passed
by assignment. More on this later.

Wednesday, February 20, 13

Our new function in action
We’ll create our function
on the fly in the
interpreter.
>>> def add(x,y):
... a = x + y
... return a

test it out with numbers
>>> x = 2
>>> y = 3
>>> add(x,y)
5

how about strings?
>>> x = ‘foo’
>>> y = ‘bar’
>>> add(x,y)
‘foobar’

functions can be assigned
to variables
>>> func = add
>>> func(x,y)
‘foobar’

how about numbers and strings?
>>> add(‘abc',1)
Traceback (innermost last):
File "<interactive input>", line 1, in ?
File "<interactive input>", line 2, in add
TypeError: cannot add type "int" to string

Wednesday, February 20, 13

More about functions
Every function returns
a value (or NONE)
but you don't need to
specify returned type!

Function documentation
>>> def add(x,y):
... """this function
... adds two numbers"""
... a = x + y
... return a

You can always retrieve
function documentation
>>> print add.__doc__

this function
adds two numbers

FUNCTIONAL PROGRAMMING:
"map(function, sequence)"
>>> def cube(x): return
x*x*x ...
>>> map(cube, range(1, 6))
[1, 8, 27, 64, 125]

"reduce (function,
sequence)"
>>> def add(x,y): return x+y
...
>>> reduce(add, range(1, 11))
55
"filter (function,
sequence)"
>>> def f(x): return x % 2 !=
0
...
>>> filter(f, range(2, 10))
[3, 5, 7, 9]

Wednesday, February 20, 13

Even more on functions
buld-in function "dir" is
used to list all
definitions in a module
>>> import scipy
>>> dir(scipy)
.......................
...<a lot of stuf>...
.......................

Lambda function:
Python supports one-line mini-
functions on the fly.
Borrowed from Lisp, lambda
functions can be used anywhere
a function is required.
>>> def f(x): return x*x
>>> map(f, range(5))
[0, 1, 4, 9, 16]
>> map(lambda x: x*x, range(5))
[0, 1, 4, 9, 16]

more on lambda function:
>>> a=range(10)
>>> a.sort(lambda x,y: cmp(y,x))
>>> print a
 [9, 8, 7, 6, 5, 4, 3, 2, 1, 0]
>>> map(lambda x: x*2+10, range(5))
 [10, 12, 14, 16, 18]
>>> print reduce(lambda x,y: x+y, range(5))
 10

Wednesday, February 20, 13

Modules

ex1.py

PI = 3.1416

def sum(lst):
 tot = lst[0]
 for value in lst[1:]:
 tot = tot + value
 return tot

l = [0,1,2,3]
print sum(l), PI

EX1.PY FROM SHELL
[ej@bull ej]$ python ex1.py
6, 3.1416

FROM INTERPRETER
load and execute the module
>>> import ex1
6, 3.1416
get/set a module variable.
>>> ex1.PI
3.1415999999999999
>>> ex1.PI = 3.14159
>>> ex1.PI
3.1415899999999999
call a module variable.
>>> t = [2,3,4]
>>> ex1.sum(t)
9

Wednesday, February 20, 13

Modules cont.

ex1.py version 2

PI = 3.14159

def sum(lst):
 tot = 0
 for value in lst:
 tot = tot + value
 return tot

l = [0,1,2,3,4]
print sum(l), PI

EDITED EX1.PYINTERPRETER

load and execute the module
>>> import ex1
6, 3.1416
< edit file >
import module again
>>> import ex1
nothing happens!!!

use reload to force a
previously imported library
to be reloaded.
>>> reload(ex1)
10, 3.14159

Wednesday, February 20, 13

Modules cont. 2
Modules can be executable scripts or libraries or both.

“ An example module “

PI = 3.1416

def sum(lst):
 ””” Sum the values in a
 list.
 ”””
 tot = 0
 for value in lst:
 tot = tot + value
 return tot

EX2.PY EX2.PY CONTINUED

def add(x,y):
 ” Add two values.”
 a = x + y
 return a

def test():
 l = [0,1,2,3]
 assert(sum(l) == 6)
 print ‘test passed’

this code runs only if this
module is the main program
if __name__ == ‘__main__’:
 test()

Wednesday, February 20, 13

Classes

>>> class particle:
... # Constructor method
... def __init__(self,mass, velocity):
... # assign attribute values of new object
... self.mass = mass
... self.velocity = velocity
... # method for calculating object momentum
... def momentum(self):
... return self.mass * self.velocity
... # a “magic” method defines object’s string representation
... def __repr__(self):
... msg = "(m:%2.1f, v:%2.1f)" % (self.mass,self.velocity)
... return msg

SIMPLE PARTICLE CLASS

EXAMPLE
>>> a = particle(3.2,4.1)
>>> a
(m:3.2, v:4.1)
>>> a.momentum()
13.119999999999999

Wednesday, February 20, 13

Reading files

>>> results = []
>>> f = open(‘rcs.txt’,’r’)

read lines and discard header
>>> lines = f.readlines()[1:]
>>> f.close()

>>> for l in lines:
... # split line into fields
... fields = line.split()
... # convert text to numbers
... freq = float(fields[0])
... vv = float(fields[1])
... hh = float(fields[2])
... # group & append to results
... all = [freq,vv,hh]
... results.append(all)
... < hit return >

FILE INPUT EXAMPLE

EXAMPLE FILE: RCS.TXT
#freq (MHz) vv (dB) hh (dB)
 100 -20.3 -31.2
 200 -22.7 -33.6

>>> for i in results: print i
[100.0, -20.30…, -31.20…]
[200.0, -22.70…, -33.60…]

PRINTING THE RESULTS

Wednesday, February 20, 13

More compact version

>>> results = []
>>> f = open(‘rcs.txt’,’r’)
>>> f.readline()
‘#freq (MHz) vv (dB) hh (dB)\n'
>>> for l in f:
... all = [float(val) for val in l.split()]
... results.append(all)
... < hit return >
>>> for i in results:
... print i
... < hit return >

ITERATING ON A FILE AND LIST COMPREHENSIONS

EXAMPLE FILE: RCS.TXT
#freq (MHz) vv (dB) hh (dB)
 100 -20.3 -31.2
 200 -22.7 -33.6

Wednesday, February 20, 13

Same thing, one line

>>> print [[float(val) for val in l.split()] for
... l in open("rcs.txt","r")
... if l[0] !="#"]

OBFUSCATED PYTHON CONTEST…

EXAMPLE FILE: RCS.TXT
#freq (MHz) vv (dB) hh (dB)
 100 -20.3 -31.2
 200 -22.7 -33.6

Wednesday, February 20, 13

Sorting

The builtin cmp(x,y)
function compares two
elements and returns
-1, 0, 1
x < y --> -1
x == y --> 0
x > y --> 1
>>> cmp(0,1)
-1

By default, sorting uses
the builtin cmp() method
>>> x = [1,4,2,3,0]
>>> x.sort()
>>> x
[0, 1, 2, 3, 4]

CUSTOM CMP METHODSTHE CMP METHOD

define a custom sorting
function to reverse the
sort ordering
>>> def descending(x,y):
... return -cmp(x,y)

Try it out
>>> x.sort(descending)
>>> x
[4, 3, 2, 1, 0]

Wednesday, February 20, 13

Sorting

Comparison functions for a variety of particle values
>>> def by_mass(x,y):
... return cmp(x.mass,y.mass)
>>> def by_velocity(x,y):
... return cmp(x.velocity,y.velocity)
>>> def by_momentum(x,y):
... return cmp(x.momentum(),y.momentum())

Sorting particles in a list by their various properties
>>> x = [particle(1.2,3.4),particle(2.1,2.3),particle(4.6,.7)]
>>> x.sort(by_mass)
>>> x
[(m:1.2, v:3.4), (m:2.1, v:2.3), (m:4.6, v:0.7)]
>>> x.sort(by_velocity)
>>> x
[(m:4.6, v:0.7), (m:2.1, v:2.3), (m:1.2, v:3.4)]
>>> x.sort(by_momentum)
>>> x
[(m:4.6, v:0.7), (m:1.2, v:3.4), (m:2.1, v:2.3)]

SORTING CLASS INSTANCES

Wednesday, February 20, 13

Criticism of Python

All function arguments are called by reference. Changing data in
subroutine effects global data!
>>> def sum(lst):
... tot=0
... for i in range(0,len(lst)):
... lst[i]+=1
... tot += lst[i]
... return tot
>>> a=range(1,4)
>>> sum(a)
9
>>> a
[2,3,4]
Can be fixed by
>>> a=range(1,4)
>>> a_copy = a[:] # be careful: a_copy = a would not work
>>> sum(a_copy)
9
>>> a
[1,2,3]

FUNCTION ARGUMENTS

Wednesday, February 20, 13

Criticism of Python

Python does not support something like "const" in C++. If users checks function
declaration, it has no clue which arguments are meant as input (unchanged on exit) and
which are output

FUNCTION ARGUMENTS

User has "no direct contact" with data structures. User might not be aware of data
handling. Python is optimized for speed -> references.

COPYING DATA

>>> a=[1,2,3,[4,5]]
>>> b=a[:]
>>> a[0]=2
>>> b
[1,2,3,[4,5]]
>>> a[3][0]=0
>>> b
[1,2,3,[0,5]]

Can be fixed by
>>> import copy
>>> a=[1,2,3,[4,5]]
>>> b = copy.deepcopy(a)
>>> a[3][0]=0
>>> b
[1,2,3,[4,5]]

Wednesday, February 20, 13

Criticism of Python
CLASS DATA

In C++ class declaration uncovers all important information about the class - class members (data
and methods). In Python, data comes into
existence when used. User needs to read implementation of the class (much more code) to find
class data and understand the logic of the class.
This is particularly important in large scale codes.

If you import a module in command-line interpreter, but the module was later changed on disc,
you can reload the module by typing
reload modulexxx
This reloads the particular modulexxx, but does not recursively reload modules that might also be
changed on disc and are imported by the modulexxx.

RELODING MODULES

Wednesday, February 20, 13

NumPy

Wednesday, February 20, 13

NumPy and SciPy
In 2005 Numarray and Numeric were merged into common
project called "NumPy". On top of it, SciPy was build
recently and spread very fast in scientific community.

Home: http://www.scipy.org/SciPy

>>> from numpy import *
>>> import numpy
>>> numpy.__version__
‘1.6.1’
 or better
>>> from scipy import *
>>> import scipy
>>> scipty.__version__
'0.12.0'

IMPORT NUMPY AND SCIPY

Wednesday, February 20, 13

Array Operations

>>> a = array([1,2,3,4])
>>> b = array([2,3,4,5])
>>> a + b
array([3, 5, 7, 9])

Create array from 0 to 10
>>> x = arange(11.)

multiply entire array by
scalar value
>>> a = (2*pi)/10.
>>> a
0.628318530718
>>> a*x
array([0.,0.628,…,6.283])

apply functions to array.
>>> y = sin(a*x)

SIMPLE ARRAY MATH MATH FUNCTIONS

NumPy defines the following
constants:
pi = 3.14159265359
e = 2.71828182846

Wednesday, February 20, 13

Introducing Numeric Arrays

>>> a = array([0,1,2,3])
>>> a
array([0, 1, 2, 3])
>>a=array([0,1,2],dtype=float)

SIMPLE ARRAY CREATION

>>> type(a)
<type 'numpy.ndarray'>

CHECKING THE TYPE

>>> a.dtype
dtype('int32')

NUMERIC TYPE OF ELEMENTS

>>>a.itemsize
4

BYTES IN AN ARRAY ELEMENT

>>> a.shape
(4,)
>>> shape(a)
(4,)

ARRAY SHAPE

>>> a.tolist()
[0, 1, 2, 3]

CONVERT TO PYTHON LIST

>>> a[0]
0
>>> a[0] = 10
>>> a
[10, 1, 2, 3]

ARRAY INDEXING

Wednesday, February 20, 13

>>> a[1,3]
13

>>> a[1,3] = -1
>>> a
array([[0, 1, 2, 3],
 [10,11,12,-1]])

Multi-Dimensional Arrays

>>> a = array([[0, 1, 2, 3],
 [10,11,12,13]])
>>> a
array([[0, 1, 2, 3],
 [10,11,12,13]])

>>> a[1]
array([10, 11, 12, 13])

row
column

MULTI-DIMENSIONAL ARRAYS

>>> shape(a)
(2, 4)

(ROWS,COLUMNS)

GET/SET ELEMENTS

ADDRESS FIRST ROW USING
SINGLE INDEX

FLATTEN TO 1D ARRAY

 A.FLAT AND RAVEL()
 REFERENCE ORIGINAL

MEMORY

>>> a.ravel()
array([0,1,2,3,10,11,12,13])

>>> a.ravel()[7]=-1
>>> a
array([[0, 1, 2, 3],
 [10,11,12,-1]])

Wednesday, February 20, 13

Array Slicing

>>> a[0,3:5]
array([3, 4])

>>> a[4:,4:]
array([[44, 45],
 [54, 55]])

>>> a[:,2]
array([2,12,22,32,42,52])

SLICING WORKS MUCH LIKE
STANDARD PYTHON SLICING

>>> a[2::2,::2]
array([[20, 22, 24],
 [40, 42, 44]])

STRIDES ARE ALSO POSSIBLE

Wednesday, February 20, 13

Slices Are References

>>> a = array([0,1,2])

create a slice containing only the
last element of a
>>> b = a[2:3]
>>> b[0] = 10

changing b changed a!
>>> a
array([1, 2, 10])

Slices are references to memory in original array. Changing
values in a slice also changes the original array.

Wednesday, February 20, 13

Array Constructor

array(object, dtype=None, copy=1,order=None, subok=0,ndmin=0)

object -any type of Python sequence. Nested list create multi-dimensional arrays.

dtype -character (string). Specifies the numerical type of the array. If it is None,
the constructor makes its best guess at the numeric type.

 dtype: integer, float, complex,...
copy -if copy=0 and sequence is an array object, the returned array is a

reference that data. Otherwise, a copy of the data in sequence is made.

order -'C': C-contiguous order, 'F': fortran contiguous, 'A': any order or maybe even non-
contiguous

Wednesday, February 20, 13

Array Constructor Examples

>>> a = array([0,1.,2,3])
>>> a.dtype
dtype(‘float64‘) notice decimal

FLOATING POINT ARRAYS
DEFAULT TO DOUBLE PRECISION

>>> a = array([0,1.,2,3],'f')
>>> a.dtype
dtype('float32‘)
>>> len(ravel(a))*a.itemsize
16

USE TYPECODE TO REDUCE
PRECISION

ARRAYS REFERENCING SAME
DATA

>>> a = array([1,2,3,4])
>>> b = array(a,copy=0)
>>> b[1] = 10
>>> a
array([1, 10, 3, 4])

BYTES FOR MAIN ARRAY
STORAGE

flat assures that
multidimensional arrays
work
>>>len(a.flat)*a.itemsize
32

Wednesday, February 20, 13

32-bit Typecodes

UnsignedInt1616 (2)w

UnsignedInt3232 (4)u

PyObject4 (1)O

UnsignedInt88 (1)b

Int88 (1)1 (one)

Int1616 (2)s

Int3232 (4)i

Int32 (4)l
Float0, Float8, Float16, Float3232 (4)f

Float, Float6464 (8)d

Complex0, Complex8, Complex16, Complex3264 (8)F

Complex, Complex64 128 (16)D
IdentifierBits (Bytes)Character

Highlighted typecodes correspond to Python’s standard Numeric types.

Wednesday, February 20, 13

Array Creation Functions
arange([start,]stop[,step=1],dtype=None)
 Nearly identical to Python’s range(). Creates an array of values in the

range [start,stop) with the specified step value. Allows non-integer
values for start, stop, and step. When not specified, typecode is
derived from the start, stop, and step values.

 >>> arange(0,2*pi,pi/4)
 array([0.000, 0.785, 1.571, 2.356, 3.142,
 3.927, 4.712, 5.497])

ones(shape,dtype=None,order='C')
zeros(shape,dtype=float,order='C')
 shape is a number or sequence specifying the dimensions of the array. If

typecode is not specified, it defaults to float (in old versions Int)!!!

 >>> ones((2,3),dtype=float)
 array([[1., 1., 1.],
 [1., 1., 1.]],'float64')

Wednesday, February 20, 13

Array Creation Functions (cont.)
identity(n,dtype=‘l’)
 Generates an n by n identity matrix with dtype=Int.

 >>> identity(4,dtype=int)
 array([[1, 0, 0, 0],
 [0, 1, 0, 0],
 [0, 0, 1, 0],
 [0, 0, 0, 1]])
 >>> identity(4,dtype=float)
 array([[1., 0., 0., 0.],
 [0., 1., 0., 0.],
 [0., 0., 1., 0.],
 [0., 0., 0., 1.]])

Wednesday, February 20, 13

Mathematic Binary Operators
a + b à add(a,b)
a - b à subtract(a,b)
a % b à remainder(a,b)

a * b à multiply(a,b)
a / b à divide(a,b)
a ** b à power(a,b)

MULTIPLY BY A SCALAR

ELEMENT BY ELEMENT ADDITION

ADDITION USING AN OPERATOR
FUNCTION

>>> a = array((1,2))
>>> a*3.
array([3., 6.])

>>> a = array([1,2])
>>> b = array([3,4])
>>> a + b
array([4, 6])

>>> add(a,b)
array([4, 6])

Overwrite contents of a.
Saves array creation
overhead
>>> add(a,b,a) # a += b
array([4, 6])
>>> a
array([4, 6])

IN PLACE OPERATION

Wednesday, February 20, 13

Comparison and Logical Operators

>>> a = array(((1,2,3,4),(2,3,4,5)))
>>> b = array(((1,2,5,4),(1,3,4,5)))
>>> a == b
array([[1, 1, 0, 1],
 [0, 1, 1, 1]])
functional equivalent
>>> equal(a,b)
array([[1, 1, 0, 1],
 [0, 1, 1, 1]])

equal (==)
greater_equal (>=)
logical_and (and)
logical_not (not)

not_equal (!=)
less (<)
logical_or (or)

greater (>)
less_equal (<=)
logical_xor

2D EXAMPLE

Wednesday, February 20, 13

Bitwise Operators

>>> a = array((1,2,4,8))
>>> b = array((16,32,64,128))
>>> bitwise_and(a,b)
array([17, 34, 68, 136])

bit inversion
>>> a = array((1,2,3,4),UnsignedInt8)
>>> invert(a)
array([254, 253, 252, 251],'b')

surprising type conversion
>>> left_shift(a,3)
array([8, 16, 24, 32],'i')

bitwise_and (&)
bitwise_or (|)

right_shift(a,shifts)
left_shift (a,shifts)

invert (~)
bitwise_xor

BITWISE EXAMPLES

Changed from
UnsignedInt8
to Int32

Wednesday, February 20, 13

 Element by element distance
 calculation using

Trig and Other Functions

sin(x) sinh(x)
cos(x) cosh(x)
arccos(x)

arccosh(x)
arctan(x) arctanh(x)
arcsin(x) arcsinh(x)
arctan2(x,y)

TRIGONOMETRIC

exp(x) log(x)
log10(x) sqrt(x)
absolute(x) conjugate(x)
negative(x) ceil(x)
floor(x) fabs(x)
hypot(x,y) fmod(x,y)
maximum(x,y) minimum(x,y)

OTHERS

hypot(x,y)

Equivalent to ``sqrt(x1**2 + x2**2)``,
element-wise.

Wednesday, February 20, 13

SciPy

Wednesday, February 20, 13

Overview
CURRENT PACKAGES

•Special Functions (scipy.special)
•Signal Processing (scipy.signal)
•Fourier Transforms (scipy.fftpack)
•Optimization (scipy.optimize)
•General plotting (scipy.[plt, xplt, gplt])
•Numerical Integration (scipy.integrate)
• Linear Algebra (scipy.linalg)

• Input/Output (scipy.io)
•Genetic Algorithms (scipy.ga)
•Statistics (scipy.stats)
•Distributed Computing (scipy.cow)
•Fast Execution (weave)
•Clustering Algorithms (scipy.cluster)
•Sparse Matrices* (scipy.sparse)

Wednesday, February 20, 13

Basic Environment

>>> info(linspace)
 linspace(start, stop, num=50, endpoint=1, retstep=0)
Evenly spaced samples.

Return num evenly spaced samples from start to stop. If
endpoint=1 then
last sample is stop. If retstep is 1 then return the step value
used.

>>> linspace(-1,1,5)
array([-1. , -0.5, 0. , 0.5, 1.])

>>> logspace(0,3,4)
array([1., 10., 100., 1000.])

>>> info(logspace)
 logspace(start, stop, num=50, endpoint=1)
Evenly spaced samples on a logarithmic scale.

Return num evenly spaced samples from 10**start to 10**stop. If
endpoint=1 then last sample is 10**stop.

CONVENIENCE FUNCTIONS
info help system for scipy

similar to dir for the rest of python

linspace get equally spaced
points.

r_[] also does this (shorthand)

logspace get equally spaced
points in log10 domain

Wednesday, February 20, 13

Basic Environment
CONVENIENT MATRIX GENERATION AND MANIPULATION

>>> A = mat(‘1,2,4;4,5,6;7,8,9’)

>>> A=mat([[1,2,4],[4,5,6],[7,8,9]])

>>> print A
Matrix([[1, 2, 4],
 [2, 5, 3],
]7, 8, 9[[(

>>> print A**4
Matrix([[6497, 9580, 9836],
 [7138, 10561, 10818],
]18434, 27220, 27945[[(

>>> print A*A.I
Matrix([[1., 0., 0.],
 [0., 1., 0.],
] 0., 0., 1.[[(

>>> print A.T
Matrix([[1, 2, 7],
 [2, 5, 8],
]4, 3, 9[[(

Matrix Multiplication and
Matrix Inverse

Matrix Power

Matrix Transpose

Simple creation of matrix
with “;” meaning row
separation

Wednesday, February 20, 13

More Basic Functions
TYPE HANDLING

iscomplexobj

iscomplex

isrealobj

isreal

imag

real

real_if_close

isscalar

isneginf

isposinf

isinf

isfinite

isnan

nan_to_num

common_type

cast

typename

SHAPE MANIPULATION

squeeze

atleast_1d

atleast_2d

atleast_3d

apply_over_a
xes

vstack

hstack

column_stack

dstack

expand_dims

split

hsplit

vsplit

dsplit

apply_along_
axis

OTHER USEFUL FUNCTIONS

select

extract

insert

fix

mod

amax

amin

ptp

sum

cumsum

prod

cumprod

diff

angle

roots

poly

any

all

disp

unique

extract

insert

nansum

nanmax

nanargmax

nanargmin

nanmin

unwrap

sort_complex

trim_zeros

fliplr

flipud

rot90

eye

diag

factorial

factorial2

comb

pade

derivative

limits.XXXX

Wednesday, February 20, 13

Input and Output
loadtxt, savetxt --- Reading and writing ASCII files

Student Test1 Test2 Test3 Test4

Jane 98.3 94.2 95.3 91.3
Jon 47.2 49.1 54.2 34.7
Jim 84.2 85.3 94.1 76.4

textfile.txt

>>> a = loadtxt('textfile.txt',skiprows=2,usecols=range(1,5))

>>> print a
[[98.3 94.2 95.3 91.3]
 [47.2 49.1 54.2 34.7]
 [84.2 85.3 94.1 76.4]]
>>> b = loadtxt(‘textfile.txt’,skiprows=2,usecols=(1,-2))
>>> print b
[[98.3 95.3]
 [47.2 54.2]
 [84.2 94.1]]

Skip first two rows (default=0)

Read columns 1...5

Skip first two rows

Read columns 1 and -2

Wednesday, February 20, 13

Few examples

Examples of SciPy use

Wednesday, February 20, 13

Integration

>>>from scipy import integrate, special
>>>info(integrate)
.....<documentation of integrate module>.....
>>> integrate.quad(lambda t: special.j1(t)/t,0,pi)
(1.062910971494,1.18e-14)

Suppose we want to integrate Bessel function

from scipy import *
from scipy import integrate, special
def fun(x):
 return integrate.quad(lambda t: special.j1(t)/t,0,x)

x=arange(1e-10,30,0.01)
print [fun(t)[0] for t in x]

Creating a script j1int.py:

Wednesday, February 20, 13

Minimization

>>> from scipy import *
>>> import scipy
>>> info(scipy)
.... <documentation of all available modules>
>>> from scipy import optimize
>>> info(optimize)
>>> info(optimize.fmin_powell)

>>> def func(x,a): return (x[0]-a[0])**2+(x[1]-a[1])**2

>>> optimize.fmin_powell(func, [0,0], args=([5,6],))
Opimization terminated successfully,
 Current function value: 0.00000
 Iterations: 2
 Function evaluations: 38
array([5.,6.])

Suppose we want to minimize the function

Starting guess

additional arguments

Wednesday, February 20, 13

Root finding and integration

The function

has many solutions. Suppose we want to find all solution in the range [0:100]

Wednesday, February 20, 13

Put it all together
from scipy import *
from scipy import integrate, optimize, special
""" Finds all solutions of the equation Integrate[j1(t)/t,{t,0,x}] == 1
 in the range x=[0,100]
"""

def func(x,a):
 " Computes Integrate[j1(t)/t,{t,0,x}] - a"
 return integrate.quad(lambda t: special.j1(t)/t, 0, x)[0] - a

Finds approxiate solutions of the equation in the range [0:100]
x = arange(1e-10,100,0.2) # creates an equaly spaced array
b = [func(t,1) for t in x] # evaluates function on this array

z = [1e-10] # approximate solutions of the equation
for i in range(1,len(b)): # if the function changes sign,
 if (b[i-1]*b[i]<0): z.append(x[i]) # the solution is bracketed

print "Zeros of the equation in the interval [0:100] are"
for j in range(1,len(z)):
 print j, optimize.brentq(func,z[j-1],z[j],args=(1,)) # calling root finder

Wednesday, February 20, 13

It takes around 2 seconds to get
Zeros of the equation in the interval [0:100] are
0 2.65748482457
1 5.67254740317
2 8.75990144967
3 11.872242395
4 14.9957675329
5 18.1251662422
6 21.2580027553
7 24.3930147628
8 27.5294866728
9 30.666984016
10 33.8052283484
11 36.9440332549
12 40.0832693606
13 43.2228441315
14 46.362689668
15 49.5027550388
16 52.6430013038
17 55.7833981883
18 58.9239218038
19 62.0645530515
20 65.2052764808
21 68.3460794592
22 71.4869515584
23 74.6278840946
24 77.7688697786
25 80.9099024466
26 84.0509768519
27 87.1920884999
28 90.3332335188
29 93.4744085549
30 96.615610689
31 99.7568373684

Wednesday, February 20, 13

Linear Algebra
scipy.linalg --- FAST LINEAR ALGEBRA

•Uses ATLAS if available --- very fast
•Low-level access to BLAS and LAPACK routines in
modules linalg.fblas, and linalg.flapack (FORTRAN order)

•High level matrix routines
•Linear Algebra Basics: inv, solve, det, norm, lstsq, pinv

•Decompositions: eig, lu, svd, orth, cholesky, qr, schur

•Matrix Functions: expm, logm, sqrtm, cosm, coshm, funm (general
matrix functions)

Wednesday, February 20, 13

Some simple examples
>>> A=matrix(random.rand(5,5)) # creates random matrix
>>> A.I
<inverse of the random matrix>
>>> linalg.det(A)
<determinant of the matrix>
>>> linalg.eigvals(A)
<eigenvalues only>
>>> linalg.eig(A)
<eigenvalues and eigenvectors>
>>> linalg.eigh(A)
<eigenvalues and eigenvectors for hermitian matrix>
>>> linalg.svd(A)
<SVD decomposition>
>>> linalg.cholesky(A)
<Cholesky decomposition for positive definite A>
>>> B=matrix(random.rand(5,5))
>>> linalg.solve(A,B)
<Solution of the equation A.X=B>

Wednesday, February 20, 13

Special Functions

FIRST ORDER BESSEL EXAMPLE

#environment setup
>>> from scipy import *
>>> from pylab import *
>>> from scipy import special

>>> x = arange(0,100,0.1)
>>> j0x = special.j0(x)
>>> plot(x,j0x,'o-')
>>> show()

Includes over 200 functions:
Airy, Elliptic, Bessel, Gamma, HyperGeometric, Struve, Error, Orthogonal
Polynomials, Parabolic Cylinder, Mathieu, Spheroidal Wave, Kelvin

scipy.special

Wednesday, February 20, 13

Interpolation
scipy.interpolate --- General purpose Interpolation

•1-d linear Interpolating Class

•Constructs callable function from data points

•Function takes vector of inputs and returns linear
interpolants

•1-d and 2-d spline interpolation (FITPACK)

•Splines up to order 5

•Parametric splines

Wednesday, February 20, 13

Integration
scipy.integrate --- General purpose Integration

•Ordinary Differential Equations (ODE)
integrate.odeint, integrate.ode

•Samples of a 1-d function
integrate.trapz (trapezoidal Method), integrate.simps
(Simpson Method), integrate.romb (Romberg Method)

•Arbitrary callable function
integrate.quad (general purpose), integrate.dblquad
(double integration), integrate.tplquad (triple integration),
integrate.fixed_quad (fixed order Gaussian integration),
integrate.quadrature (Gaussian quadrature to tolerance),
integrate.romberg (Romberg)

Wednesday, February 20, 13

Integration
scipy.integrate --- Example

>>> def func(x):
 return integrate.quad(cos,0,x)[0]
>>> vecfunc = vectorize(func)

>>> x = r_[0:2*pi:100j]
>>> x2 = x[::5]
>>> y = sin(x)
>>> y2 = vecfunc(x2)
>>> xplt.plot(x,y,x2,y2,'rx')

Wednesday, February 20, 13

Optimization
scipy.optimize --- unconstrained minimization and root finding

• Unconstrained Optimization
fmin (Nelder-Mead simplex), fmin_powell (Powell’s method), fmin_bfgs

(BFGS quasi-Newton method), fmin_ncg (Newton conjugate gradient),
leastsq (Levenberg-Marquardt), anneal (simulated annealing global
minimizer), brute (brute force global minimizer), brent (excellent 1-D
minimizer), golden, bracket

• Constrained Optimization
fmin_l_bfgs_b, fmin_tnc (truncated newton code), fmin_cobyla

(constrained optimization by linear approximation), fminbound (interval
constrained 1-d minimizer)

• Root finding
fsolve (using MINPACK), brentq, brenth, ridder, newton, bisect,

fixed_point (fixed point equation solver)

Wednesday, February 20, 13

Solving Hydrogen Atom

Schroedinger
equation

Ansatz for the solution:

Dimensionless variables:

Ordinary differential Equation:

Wednesday, February 20, 13

Hydrogen Atom

First order system of equations
Can be solved by “integrate.odeint”

Boundary
conditions

Boundary conditions given at the two ends → need shooting method

Wednesday, February 20, 13

Shooting

ØSuppose the two boundary conditions are given at a and b.
Choose u(a)=0 and u'(a)=c with c some small constant.

ØSolve for u(x) to the other end and check if u(b)=0.

ØUsing root finding routine find energy E for which u(b)=0. This is a bound state.

ØContinue with increasing E until sufficient number of bound states is found.

Wednesday, February 20, 13

Solving radial Hydrogen atom

ØIt turns out that forward integration of radial Schroedinger equation is unstable.
 It is better to start integrating at infinity, and then continue down to zero.

ØIt is better to use logarithmic mesh for radial variable rather than linear.
 Radial functions need smaller number of points in logarithmic mesh.

Wednesday, February 20, 13

