
KH Computational Physics- 2012 Programming

Short test of C++ knowledge
• What is a class?

• What is virtual function?

• What is template?

• What is implicit type conversion?

• What means explicit?

class A{

int a;

public:

explicit A(int a);

};

• What is return value optimization?

• What is the difference between ”new” ”new[]” and ”operator new”?

• What is placement new?

class A;

void * memory = operator new(size);

a = new(memory) A;

• What is map?

• What is deque?

Kristjan Haule, 2012 –1–

KH Computational Physics- 2012 Programming

Programming in high-level
languages

There is no ”perfect” computer language. The best choice depends on the problem.

For numerics, if speed is of upmost importance:

• fastest: Fortran77 (no aliasing)

• similarly fast: Fortran90, C, C++

• not so fast: Java, any interpreter (Perl, Python)
(aliasing: concurrent acces to a single entity causes synchonization problems and resuls in performace loss).

Human time necessary to write and mantain large scale projects:

• Python

• C++, Java

• C, Fortran 90

• Fortran77
Kristjan Haule, 2012 –2–

KH Computational Physics- 2012 Programming

For some purposes like manipulating files, writting small scripts or working with strings of

text (parsing) the best choice are interpreters: Phython, Perl...

Historical overview on computer language development can be found at

http://en.wikipedia.org/wiki/Timeline_of_programmin g_languages

There are thousands of programming languages and new ones are created every year.

Compilers : Fortran, C, C++, Pascal, (Java), ...

Interpreters : Perl, Phython, Mathematica, (Java), ...

Compilers: Code needs to be compiled and translated from the original language into

machine-code (assembler). Machine code in form of an executable can be run. When you

run the program, the computer executes the machine-code instructions in sequence.

• advantage: The machine-code can be very optimized and execution is fast.

• dissadvantage:

– The original program is no longer connected to the machine-code, and mapping the

machine-code back to the original program can be very difficult (hard job for

Kristjan Haule, 2012 –3–

http://en.wikipedia.org/wiki/Timeline_of_programming_languages

KH Computational Physics- 2012 Programming

debugger, hard to connect run-time errors with the bugs in the original code)

– Each processor type has a different machine code and thus requires a completely

different compiler.

– The code can-not be changed on fly, much less flexible and usually harder to code.

Interpreters: Converts each line of a program into machine language as the statement is

encountered. If a statement is encountered multiple times (as occurs in a loop) the machine

must convert it to machine language each time.

• advantage:

– Easy to detect bugs because original program is still closely related to execution.

– No separate executable file need be stored and the same code usually runs on

many platforms

– Usually offer more flexibility and provide more powerful statements (regular

expressions in Perl or Phython, Simplify,Solve,... in Mathematica,...)

– Code of the original program can be changed on the fly (can be very powerful)

• dissadvantage: speed - Translating the same line of code into machine-code and then

executing the machine-code has quite a high overhead.

Kristjan Haule, 2012 –4–

KH Computational Physics- 2012 Programming

Usual strategy for commercial products is to separate the product into few layers:

• low-level routines (usually C, sometimes Assembler, for numerics Fortran)

• core (usually C++)

• user interface (tools producing html, sometimes java)

Computational physicist spend most of their time on core part of numerical algorithms. Low

level routines are used (LAPACK,BLAS,root finding routines,...) and user interface is not

(yet) playing very important role. The programming language choice is therefore usually

C++.

Kristjan Haule, 2012 –5–

KH Computational Physics- 2012 Programming

C++ in short

Many excellent tutorials on the WEB

• http://www.cprogramming.com/tutorial.html#c++tutori al

• http://www.cplusplus.com/doc/tutorial/

• http://www.icce.rug.nl/documents/cplusplus/

• http://www.josuttis.com/libbook/idx.html (STL)

• http://www.oonumerics.org/oon/ (OO-numerics)

• http://cpplapack.sourceforge.net/ (CPP LAPACK)

• http://www.boost.org/ (Collection of great libraries)

• http://www.boost.org/doc/libs/1_46_0/libs/multi_arr ay/doc/index.html

The best way to learn is to actually write code.

Kristjan Haule, 2012 –6–

http://www.cprogramming.com/tutorial.html#c++tutorial
http://www.cplusplus.com/doc/tutorial/
http://www.icce.rug.nl/documents/cplusplus/
http://www.josuttis.com/libbook/idx.html
http://www.oonumerics.org/oon/
http://cpplapack.sourceforge.net/
http://www.boost.org/
http://www.boost.org/doc/libs/1_46_0/libs/multi_array/doc/index.html

KH Computational Physics- 2012 Programming

1 Hello World

The course is taken from http://cplus.about.com/od/beginnerctutorial

#include <iostream>

using namespace std;

int main()

{

cout << "Hello World!\n";

}

Line 1 : #include <iostream>

As part of compilation, the C++ compiler runs a program called the C++ preprocessor. The preprocessor is able to add and

remove code from your source file. In this case, the directive #include tells the preprocessor to include code from the file

iostream. This file contains declarations for functions that the program needs to use, as well as available classes.

Line 2 : using namespace std

C++ supports the concept of name spaces. Essentially, this allows variables to localized to certain regions of code. The

command using namespace std allows all objects and functions from the standard input and output library to be used within

this program without explicit qualifications.

Line 3 : int main()

This statement declares the main function. A C++ program can contain many functions but must always have one main

function. int specifies the return type of main to be an integer. An explicit value may be returned using a return statement.

In this case, 0 is returned be default.

Kristjan Haule, 2012 –7–

http://cplus.about.com/od/beginnerctutorial

KH Computational Physics- 2012 Programming

Line 4 : {

This opening bracket denotes the start of the scope.

Line 5 : cout<<"Hello World!\n";

cout is a object from a standard C++ library that has a method used to print strings, numbers,... to the standard output,

normally your screen. The \n is a special format modifier that tells the method to put a line feed at the end of the line. If

there were another cout in this program, its string would print on the next line.

Line 6 : }

This closing bracket denotes the end of the program.

Kristjan Haule, 2012 –8–

KH Computational Physics- 2012 Programming

2 Variables and Constants

A variable represents a location in your computer’s memory. You can put data into this location and retrieve data out of this

location. Every variable has two parts, a name and a data type.

Unlike in Fortran, variable names are case sensitive.

Some example of data types are

• int: basic integer number of size 4 bytes on 32 bit systems with a precision of 10 digits

• double: real number of size 8 bytes

• float: real number of size 4 bytes

• complex: is not a simple data type but is part of STL (complex<double>).

• user defined types, typically classes. Most of variables are classes in OO code.

Remember : Choose long variable names that tell you something about the purpose of the variable.

Never choose similar names for variables because miss-taping mistakes will not be detected by compiler.

Example of declaration

int count;

int number_of_students = 30;

This statements can appear anywhere in the program not only at the beginning.

Kristjan Haule, 2012 –9–

KH Computational Physics- 2012 Programming

It is a good practice to define variables close to the place where they are used especially if there primary purpose is being

temporary variables. For example to swap two numbers

int temp=b;

b = a;

a = temp;

It is much easier to read and understand the code if most of variables are very localized and they are declared and go out of scope

few lines latter (are destroyed).

Remember : Try to make variables localized (Make a short range interaction problem rather than long range interaction problem)

In the old day of C, strings were simple C arrays of characters (character pointers):

char firstInitial = ’J’;

char name[] = "John";

Nowadays, one can use much more flexible and usefull class string from STL

std::string firstInitial("J");

std::string name("John");

Kristjan Haule, 2012 –10–

KH Computational Physics- 2012 Programming

Constants in old days of C were usually defined with preprocessor directive

#define pi 3.1415

This should be avoided in C++ and replaced by ’const double’

const double pi = 3.1415;

because debugger will know what pi is in the second case, but not in the first case.

The statement const is used also to emphasize that this variable is not going to be changed - can not be changed. Compiler will

issue error if one tries to change it.

This is very usefull in declaring functions and classes. For example

double Circumference(const double& r){

return 2 * M_PI* r;

}

tells the reader that variable r will not be changed within the function. If function size is large, it is very usefull to see in declaration

which variables are changed and which are not inside the function.

Remember : It is highly recommended to use const whenever possible.

Kristjan Haule, 2012 –11–

KH Computational Physics- 2012 Programming

3 Input and Output

#include <iostream>

#include <string>

using namespace std;

int main()

{

string name;

int ID;

cout << "Enter your name ";

cin >> name;

cout << "Enter your ID number ";

cin >> ID;

cout << "Hello " << name << " or should I say " << ID << endl;

return 0;

}

The input operator, >>, is used to put data into variables in your program. It is also called the insertion operator. The output

operator, <<, is used to direct output to standard output or standard error. It is also called the extraction operator. These operators

also work with other streams including files.

• cin - This object provides for input from the terminal (keyboard)

• cout - This object provides for output to the screen.

• cerr - This object provides unbuffered output to the standard error device, which defaults to the screen. Unbuffered means

that any messages or data will be written immediately. With buffered input, data is saved to a buffer by the operating system,

transparently to your program. When the buffer is full, everything in it is written out. This is more efficient because each write

Kristjan Haule, 2012 –12–

KH Computational Physics- 2012 Programming

requires a certain amount of overhead from the operating system. Writing out one large buffer has less overhead than writing

out multiple smaller messages. The downside is that if a program crashes before the buffer is written, nothing in the buffer is

output. Output via cerr is unbuffered to ensure that error messages will be written out.

• clog - This object provides buffered output to the standard error device, which defaults to the screen.

To redirect in bash standart output to file stdout and standard error to stderr, one needs to execute

./myprogram > stdout 2>stderr

Kristjan Haule, 2012 –13–

KH Computational Physics- 2012 Programming

4 Conditional Processing

#include <iostream>

using namespace std;

int main()

{

int number = 5;

int guess;

cout << "I am thinking of a number between 1 and 10" << endl;

cout << "Enter your guess, please ";

cin >> guess;

if (guess == number){

cout << "Incredible, you are correct" << endl;

}else{

cout << "Sorry, try again" << endl;

}

return 0;

}

To compare two operands, relational operators are used:

• == : equal

• != : not equal

• > : greater than

• >= : greater than or equal

• < : less than

• <= : less than or equal

Kristjan Haule, 2012 –14–

KH Computational Physics- 2012 Programming

Instead of many if-else statements, it is convenient to use switch statement

#include <iostream>

using namespace std;

int main()

{

int choice;

cout << "What flavor ice cream do want?" << endl;

cout << "Enter 1 for chocolate" << endl;

cout << "Enter 2 for vanilla" << endl;

cout << "Enter 3 for strawberry" << endl;

cout << "Enter 4 for green tea flavor, yuck" << endl;

cout << "Enter you choice: ";

cin >> choice;

switch (choice) {

case 1:

cout << "Chocolate, good choice" << endl;

break;

case 2:

cout << "Vanillarific" << endl;

break;

case 3:

cout << "Berry Good" << endl;

break;

case 4:

cout << "Big Mistake" << endl;

break;

default:

cout << "We don’t have any" << endl;

cout << "Make another selection" << endl;

}

return 0;

}

Multiple conditions can use the following operators:

&& AND

|| OR

! NOT

An example of multiple condition statement:

if(x < 7&& y > 50 || z < 2)....

Kristjan Haule, 2012 –15–

KH Computational Physics- 2012 Programming

5 Looping

Most often used loop statement in C or C++ is for statement and is also the fastest.

for (int i = 0; i<100; i++) cout << i << endl;

First 100 integer numbers can be printed to standard output also with do-while or while statement in the following way or

int i=0;

do {

cout << i << endl;

} while (++i<100);

or

int i = -1;

while (++i < 100){

cout << i << endl;

}

The important difference between the first and the second statement is the execution order and time of test statement (and also

incremenet statement). In the first case, it is performed after printing and therefore the statement is always executed even if the

condition is never true. In the second case, the statement will never execute if the condition is never true.

Kristjan Haule, 2012 –16–

KH Computational Physics- 2012 Programming

Homework: Bug population and bifurcation plot

In order to plot in C++, you should install a package for that. One good package is plotter

(part of gnu). To install it in

• Ubuntu: use Synaptic package manager to install two packages: plotutils and

libplot dev

• Mac:

brew install plotutils

Imagine a bunch of insects reproducing generation after generation. We start with N0

bugs, in the next generation we have N1 and after i generations we have Ni of them.

The birth rate is proportional to the number of living bugs as long as their number is not too

big. When they populate the entire region, the competition for a finite food suply tends to

limit their number to maximum N∗. A plausible model for the bug population is

∆Ni

∆t
= λNi(N∗ −Ni) (1)

To simplify units, we define

µ = 1 + λN∗∆t (2)
Kristjan Haule, 2012 –17–

KH Computational Physics- 2012 Programming

xi =
Ni

N∗

λ∆t

λ∆t+ 1
N∗

(3)

Now, µ > 1 and xi ∈ [0, 1]. Bug population becomes

xi+1 = µxi(1− xi) (4)

Kristjan Haule, 2012 –18–

KH Computational Physics- 2012 Programming

We are interested in the bug population after a long period of time. The equation has two

fixed points:

xi = 0 (5)

xi = 1−
1

µ
(6)

The fixed point is stable if
∣

∣

∣

∣

dxi+1

dxi

∣

∣

∣

∣

< 1 (7)

In case of our bugs, the derivative is µ(1− 2xi). The point of no bugs is stable for µ < 1

(not possible in this case). For the second fixed point, the derivative is 2− µ and is

therefore stable at µ < 3.

To summarize:

• for µ ∈ [1..3] stable fixed point is xi = 1− 1/µ.

• for µ > 3 there is no fixed point. We can find points with double period (attractors or

cycle points) by requiring xi+2 = xi.

Kristjan Haule, 2012 –19–

KH Computational Physics- 2012 Programming

Bifurcation plot is obtained by plotting population of bugs xi (versus growth rate µ) after a

long period of time when it reaches a stedy state.

The algorithm is:

• start with any bug population xi ∈ [0...1]

• simulate a few hundred bug generations to reach the stedy state

• after the stedy state is reached, plot a few hundred generations of bugs xi on the

screen at points (xi, µ).

• scan value of µ between [1...4] and try a few different initial populations. The

bifurcation should be independent of the initial population.

Kristjan Haule, 2012 –20–

KH Computational Physics- 2012 Programming

6 Pointers

Memory of a computer is enumerated and each variable is stored at certain unique adress. Usually one is interested in the value of

the variable which is the content of memory slot. The address of the same memory slot is called pointer to the variable.

Pointers provide much power and utility for the programmer to access and manipulate data in ways not seen in some other

languages (Fortran). However, there is a drawback of this flexibility, called alliasing which slows down the execution of the program

for 10%-20%.

Some operations are possible only by using pointers. However, in good C++ program, programmer should almost never see a

pointer (or need to care how to manipulate pointers). This should be hidden inside basic classes which are very seldom

reimplemented (for example vector, matrix, map,...). When they are, they should be heavily tested first, and only then used in

writting numerical algorithms. In this way, most painful memory fault bugs are avoided (Very hard to achieve in Fortran90).

Remember : Pointers are most frequent source of program bugs. Avoid using them if not necessary.

Simple examples of pointer usage:

int count = 5;

int * ptr = &count // Stores the address of count.

int count_copy = * ptr; // pointer is dereferenced and the contents of memory

// is assigned to new variable

* ptr = * ptr + 2; // contents of memory is changed. count is now equal to 7.

// count_copy is still 5

ptr = ptr + 2; // ptr now points to new location 2 * 4=8 bytes after variable count.

* ptr = 3; // This might cause corredump. The contents of unallo cated memory

// is changed. The results is unpredictable.

Kristjan Haule, 2012 –21–

KH Computational Physics- 2012 Programming

The most important use of pointers for us is in allocating memory for data structures: arrays, matrices,... But we, as users, do not

necessary need to implement these structures. We can use them.

The usual static C arrays are defined in the following way

double A[100]; // vector of size 100

The problem of static C type of arrays is that the size needs to be known at compile time (just like fortran77). This is not convenient

for most of algorithms.

Dynamic arrays are allocated with operator ”new” in C++

double * A = new double[N];

....

delete[] A;

Here N can be any integer number determined during execution. Don’t forger to deallocate memory with delete every time using

new. Number of new and delete statements should always exactly match.

It is much more convenient to use predefined class of type vector from STL. The same statement with vector is

vector<double> A(N);

User does not see pointers although they are used in this contructor. User does not need to deallocate memory either, because

the class is destroyed automaticaly when variable A goes out of scope.

Kristjan Haule, 2012 –22–

KH Computational Physics- 2012 Programming

7 File Input and Output

#include <iostream>

#include <fstream> // Includes definitions of the file inpu t-output streams

using namespace std;

int main()

{

ofstream myFile("out.txt"); // Creates an output file stre am object named myFile

if (! myFile) // Always test file open.

{

cout << "Error opening output file" << endl;

return -1; // Program is terminated

}

myFile << "Hello World" << endl; // Actual writting

myFile.close(); // It is advisable to close the file in order that

// computer flushes output

return 0; // In most compilers, this is not really necessary

// because destructor flushes output anyway.

}

Many options can be used for opening data files

• out - Open a file or stream for insertion (output).

• in - Open a file or stream for extraction (input).

• app - Append rather than truncate an existing file. Each insertion (output) will be written to the end of the file

Kristjan Haule, 2012 –23–

KH Computational Physics- 2012 Programming

• trunc - Truncate existing file (default behavior)

• ate - Opens the file without truncating, but allows data to be written anywhere in the file

• binary - Treat the file as binary rather than text. A binary file has data stored in internal formats, rather than readable text

format. For example, a float would be stored as its internal four byte representation rather than as a string.

An example of opening output binary file for appending:

ofstream myFile("SomeFileName",ios::out | ios::spp | ios ::binary);

To combine modes, one needs to use symbol | (”or”)

Need to know:

• By default, if a file does not exist it is created.

• By default, a file will be a text file, not a binary file.

• By default, an existing file is truncated.

One can read and write from the file in the same way as from standard input and output by << and >>. There are many other very

usefull advanced functions for reading and writting including getline,ignore,get,peek,putback,read. Check

them out when you need them.

There exist so-called input-output manipulators which control how data is formatted. Most often, a precision of the output stream is

changed (increased). The function width than needs to be used to take enough space between two real numbers for nicer output.

#include <iostream>

#include <iomanip> // manipulators defined

.....

cout.precision(16);

cout<<"variable a = "<<setw(25)<<a<<endl;

Kristjan Haule, 2012 –24–

KH Computational Physics- 2012 Programming

8 References

The real usefulness of references is when they are used to pass values into functions. They provide a way to return values from the

function withouth using pointers.

But first we’ll examine how to create and use references.

int val; // Declares an integer

int &rVal = val; // Declares a reference to the integer val

Notice the use of the ”&” before the reference name. It indicates that rVal is a reference rather than an ordinary object. A reference

is not a unique object. It is merely an alias or synonym for another object.

int val = 5; // Declares an integer

int &rVal = val; // Declares a reference to the integer val.

rVal = 6; // val is now also 6 since rVal is actually the same var iable as val

val = 7; // val and rVal are both 7 now

Reference cannot be reassigned. It has to be assigned when declared (line two above) and from then on, the reference is always

bound to the same variable. Pointer, on the other hand, can be reasigned and pointed somewhere else.

Kristjan Haule, 2012 –25–

KH Computational Physics- 2012 Programming

9 References in a function call

C++ has an important advantage over C because it supports function call by reference. In C, one needs to pass pointers instead.

In fortran, on the other hand, there is no possibility to pass variable by value and everything is called by reference.

In C++ one has both choices for passing arguments to the function: call by value or call by reference.

This is call by reference

int swap(int& a, int& b){

int temp = b;

b = a;

a = temp;

}

This is call by value

int max(int a, int b){

return (a>b) ? a : b;

}

This could alternatively be written with constant references

int max(const int& a, const int& b){

return (a>b) ? a : b;

}

Kristjan Haule, 2012 –26–

KH Computational Physics- 2012 Programming

Usual call by value is discouraged in this case since one could miss-use variables inside the function body

int max(int& a, int& b){

a = 3; // a is changed not only locally but also globally.

return (a>b) ? a : b;

}

Call by value in the case of swap would not work. The following code does not modify variables a or b:

int swap(int a, int b){

int temp = b;

b = a;

a = temp;

}

Kristjan Haule, 2012 –27–

KH Computational Physics- 2012 Programming

10 Object oriented programming

Wikipedia : Object-oriented programming (OOP) is a programming paradigm that uses

”objects” to design applications and computer programs. It utilizes several techniques from

previously established paradigms, including inheritance, modularity, polymorphism, and

encapsulation. Even though it originated in the 1960s, OOP was not commonly used in

mainstream software application development until the 1990s. Today, many popular

programming languages (such as Java, JavaScript, C#, C++, Python, PHP, Ruby and

Objective-C) support OOP.

Object-oriented programming’s roots reach all the way back to the creation of the Simula

programming language in the 1960s, when the nascent field of software engineering had

begun to discuss the idea of a software crisis . As hardware and software became

increasingly complex, how could software quality be maintained? Object-oriented

programming in part addresses this problem by strongly emphasizing modularity in

software.

Kristjan Haule, 2012 –28–

KH Computational Physics- 2012 Programming

Creators of Simula programming language (Ole-Johan Dahl and Kristen Nygaard of the

Norwegian Computing Center in Oslo) were working on ship simulations, and were

confounded by the combinatorial explosion of how the different attributes from different

ships could affect one another. The idea occurred to group the different types of ships into

different classes of objects, each class of objects being responsible for defining its own data

and behavior.)

Object-oriented programming may be seen as a collection of cooperating objects, as

opposed to a traditional view in which a program may be seen as a collection of functions,

or simply as a list of instructions to the computer. In OOP, each object is capable of

receiving messages, processing data, and sending messages to other objects. Each object

can be viewed as an independent little machine with a distinct role or responsibility.

Object-oriented programming is intended to promote greater flexibility and

maintainability in programming, and is widely popular in large-scale software engineering.

By virtue of its strong emphasis on modularity, object oriented code is intended to be

simpler to develop and easier to understand later on, lending itself to more direct analysis,

coding, and understanding of complex situations and procedures than less modular

programming methods

Kristjan Haule, 2012 –29–

KH Computational Physics- 2012 Programming

Classes are a software construct that can be used to emulate a real world object. It can be

defined by its attributes and by its actions. (a cat has attributes such as its age, weight, and color. It also has a

set of actions that it can perform such as sleep, eat and complain (meow).)

The difference between a class and an object can be confusing to beginners.

• A class is data type that encapsulates data and abilities.

• An object is a particular instance of a class.

In case of simple integer

int x;

Class is ”int” and object is x.

The goal in designing classes is to have all the relevant attributes and abilities encapsulated

by the class. Any class contains

• class members - its data

• class methods - its functions

Kristjan Haule, 2012 –30–

KH Computational Physics- 2012 Programming

Designing good classes is very challenging even for experienced programmers. The

designing part of programming is the most important part and some effort should be

devoted to carefully define the problem and choose ”best” classes for the problem at hand.

What is a good choice of classes?

Classes should not be too big.

Classes should interact as little as possible

The interaction should be simple.

Choosing a ”good” set of classes is like finding quasiparticles

of an interacting many-body problem.

Kristjan Haule, 2012 –31–

KH Computational Physics- 2012 Programming

Class interface should be complete and minimal.

A complete interface is one that allows clients to do anything they might reasonably want to

do.

A minimal interface, on the other hand, is one with as few functions in it as possible, one in

which no two member functions have overlapping functionality. Clients can do whatever

they want to do, but the class interface is no more complicated than absolutely necessary.

Encapculation : Users can see an object as a black box with a well-defined interface to a

set of functions in a way which hides their internal workings.

Good choice of classes should have a natural syntax, an intuitive semantics.

They should be as simple to understand as standard types are, for example string, vector,...

One usually discovers that the choice of classes was bad only when the coding is finished,

or when one comes back to the same code after a few monts and does not understand

anymore what each class can be used for.

Kristjan Haule, 2012 –32–

KH Computational Physics- 2012 Programming

First example of a class:

class dcomplex{

private:

double re, im;

public:

dcomplex (double r = 0, double i = 0): re (r), im (i) {}

dcomplex conj() const {return dcomplex(re,-im);}

double real() const { return re; }

double imag() const { return im; }

dcomplex& operator+= (const dcomplex& r);

dcomplex& operator-= (const dcomplex& r);

friend dcomplex operator+ (const dcomplex& x, const dcompl ex& y);

};

Access specifiers are

• private indicates that a member may be accessed only by class methods and not by other parts of the program.

• public indicates that a member is accesible from the ”outside world”.

• protected allows access to the derived classes. For the rest of the world, members are hidden.

Members ”re” and ”im” can not be accessed directly by users of dcomplex type. They can be accessed only through member

functions real() and imag().

Good class design should always enforce data hiding, i.e., limiting access and manipulation of members only through methods.

The interface to the class is public and the data is private.

Data hiding accomplishes two goals

• Users need not be concerned with the internal representation of the data

Kristjan Haule, 2012 –33–

KH Computational Physics- 2012 Programming

• If the internal representation of the data is modified, any code using this class need not be modified.

There are two ways to define methods:

• within the class definition (small methods, automatically inlined)

• outside of the class (larger methods)

inline dcomplex& dcomplex::operator+= (const dcomplex& r)

{

re += r.re;

im += r.im;

return * this;

}

Inlined functions are faster (avoid overhead of function call) but compilation is slower.

Constructor can have ”member initialization list”. It is a comma-separated list of members along with their initial values, separated

by a colon from the end of the parameter list.

inline dcomplex operator+ (const dcomplex& x, const dcompl ex& y)

{

return dcomplex(x.re + y.re, x.im + y.im);

}

Friend function is a function which is allowed to access private and protected members.

Note that it is ’return by value’ function. ’Return by reference’ would not work. It is important to return temporary object of unnamed

form to allow return value optimization.

Functions can be overloaded (multiple functions with the same name) Each version of the function must differ in either the number

and/or type of its arguments.

Kristjan Haule, 2012 –34–

KH Computational Physics- 2012 Programming

Can have default arguments. Defaults must be specified starting at the right most parameters.

Second example of a class:

class function{

protected:

double * f;

int N;

public:

function(): f(NULL), N(0) {};// default constructor neede d for arrays.

explicit function(int N_); // No conversion allowed

function(const function&); // Copy constructor

˜function(); // Destructor

int size() const { return N;}

double& operator[](int i) // returns reference, thus allow s modifing class

{ if(i>=N) cerr<<"Out of range in function[]"<<endl; retur n f[i];}

const double& operator[](int i) const// returns const ref. Needed when declared const

{ if(i<N) cerr<<"Out of range in function[]"<<endl; return f[i];}

}

A constructor is called whenever an object is defined or dynamically allocated using the ”new” operator. It is typically used to obtain

resources such as memory

inline function::function(int N_)

{ f = new double[N_];}

An object’s destructor is called whenever an object goes out of scope or when the ”delete” operator is called on a pointer to the

object. The purpose of the destructor is clean up.

inline function1D::˜function()

Kristjan Haule, 2012 –35–

KH Computational Physics- 2012 Programming

{ delete[] f; f=NULL;}

Why explicit in declaration of constructor?

int DoSomething(const function& f);

....

DoSomething(2); // Error, constructor is explicit and conv ersion not possible

Few points to stress

• A constructor is a method that has the same name as its class.

• A destructor is a method that has as its name the class name prefixed by a tilde, .

• Neither constructors nor destructors return values. They have no return type specified.

• Constructors can have arguments.

• Constructors can be overloaded.

• If any constructor is written for the class, the compiler will not generate a default constructor.

• The default constructor is a constructor with no arguments, or a constructor that provides defaults for all arguments.

• The container classes such as vector require default constructors to be available for the classes they hold. Dynamically

allocated class arrays also require a default constructor. If any constructors are defined, you should always define a default

constructor as well.

• Destructors have no arguments and thus cannot be overloaded.

Remember : If constructor allocates memory, destructor needs to deallocate the same memory in the same way.

Kristjan Haule, 2012 –36–

KH Computational Physics- 2012 Programming

Dynamic allocation of memory
• new operator

– most often used.

– Allocates any object - allocates memory and calls constructor

– Example: string * ps = new string("Memory Management");

• new[]

– allocates an array

– Example string * ps = new string[10];

– Don’t forget to use ”delete[]” instead of simple ”delete”;

• operator new (equivalent to malloc in C)

– returns void *

– it returns a pointer to raw, uninitialized memory. No constructor called

– Example: void * memory = operator new(size);

– Don’t forget to call operator delete : operator delete(memory)

• ”placement” new

– raw memory is already allocated, one constructs an object in the existing raw memory (calls constructor)

– Example: A is a class type a = new(memory) A;

– Don’t forget to call destructor ”by hand”: a.˜A();

Kristjan Haule, 2012 –37–

KH Computational Physics- 2012 Programming

Copy constructor
A copy constructor is a special constructor that takes as its argument a reference to an object of the same class and creates a new

object that is a copy.

function(const function&); // Copy constructor

By default, the compiler provides a copy constructor that performs a member-by-member copy from the original object to the one

being created. This is called a member wise or shallow copy. This is often not satisfactory.

In the above example, default copy constructor would only create new pointer (double* f) which would point to the same location in

memory. When the original object is destroyed, the memory-data is gone and the copy of the object, created by the copy

constructor, is corrupted.
Remember : Whenever your constructor allocates memory, default copy constructor is not enough.

Write your copy constructor.

inline function::function(const function& m)

{

resize(m.N);

std::copy(m.f,m.f+N,f);

}

inline void function::resize(int n)

{

if (n>N){

if (f) delete[] f;

f = new T[n];

}

N = n;

}
Kristjan Haule, 2012 –38–

KH Computational Physics- 2012 Programming

Remember : Always prefer pass-by-const-reference to pass-by-value.

The meaning of passing an object by value is defined by the copy constructor of that object’s class. This can make pass-by-value

an extremely expensive operation.

The following peaces of code give the same result, but the second is much slower. It needs two more copy-constructor calls

inline dcomplex operator+ (const dcomplex& x, const dcompl ex& y)

{

return dcomplex(x.re + y.re, x.im + y.im);

}

and

inline dcomplex operator+ (const dcomplex x, const dcomple x y)

{

return dcomplex(x.re + y.re, x.im + y.im);

}

In case of large arrays or matrices, the overhead can be enormous.

Kristjan Haule, 2012 –39–

KH Computational Physics- 2012 Programming

Arrays of objects
Default constructor is necessary for creating arrays of objects. Needed also when STL standard containers are used for storage.

function f1; // Simple object. Calls default constructor. O bject is empty (of size 0)

function f2(N); // Simple object. Calls constructor which a llocates space for N numbers.

function fa[3]; // Array of functions. For each function, de fault constructor is called

std::vector<function> fb(M); // Vector of functions. Agai n default constructors are called

function fc[3] = {10,10,10}; // Rarely used and not very usef ull. Calls non-default const.

Static members
Static members provide a way to create objects that are shared by an entire class, rather than being part of a particular instance of

the class, an object. Static methods provide a way to access and update static members.

class function{

protected:

static const int max_size = 1000;

static int default_size;

public:

static int Set_default_size(int def_size){default_size =def_size;}

...

}

Kristjan Haule, 2012 –40–

KH Computational Physics- 2012 Programming

Homework:
• Implement your own class Vector.

The declaration of the vector class is:

class Vector{

int N; // size of the vector

double * m; // pointer to data

public:

///// constructors & destructor

Vector(int N, double def_val=0); // constructor takes size as an argument

Vector(); // default constructor is called when no argument s are

Vector(const Vector& A); // copy constructor necessary for return by value

˜Vector(); // desctructor necessary because we have pointe rs to

///// other class members

double operator[](int i) const; // array access operator fo r reading

double& operator[](int i); // array access operator for wri tting

int size() const {return N;} // returns size

void resize(int N); // resizes existing vector

void random(); // fills with random numbers

};

Implementation of Vector class is empy.

The testing code is available to download (matrix.cc) as well as matrix class (matrix.h). check

http://www.physics.rutgers.edu/˜haule/509/src_prog/ C++/homework2/ for details

Kristjan Haule, 2012 –41–

KH Computational Physics- 2012 Programming

Inheritance
check out http://www.cs.bu.edu/teaching/cpp/inheritance/intro/

Classes attempt to model real world entities - have various relationships which help to simplify the task of understanding the

systems. One of them is Inheritance.

Creating or deriving a new class using another class as a base is called inheritance. The new class created is called a Derived

class and the old class used as a base is called a Base class in C++ inheritance terminology.

C++ inheritance is very similar to a parent-child relationship. When a class is inherited all the functions and data member are

inherited, although not all of them will be accessible by the member functions of the derived class.

• The derived class will inherit all the features of the base class

• The derived class can also add its own features

• It can also override some of the features (functions) of the base class

• Exeptions to the above rules:

– The constructor and destructor of a base class are not inherited

– the assignment operator is not inherited

– the friend functions and friend classes of the base class are also not inherited.

In the derived class, only protected and public members of the base class are accessible. The private members of the base class

are not accessible by a derived class.

Remember : Most of data should be proteced rather than private if a class is used as a base class.

Kristjan Haule, 2012 –42–

KH Computational Physics- 2012 Programming

class vehicle{

protected: // members accesible also for Car

string colorname; // Car has colorname and

int number_of_wheels; // number_of_wheels

public:

vehicle(); // constructor is not inherited

˜vehicle(); // destructor is not inherited

void start(); // start, stop and run exists also

void stop(); // in Car, but they can be changed

void run(); // if necessary

};

class Car: public vehicle{

protected:

char type_of_fuel; // Char has one more member

public:

Car();

};

Improper inheritance:

class Bird{

public:

void fly();

. . .

};

class Penguin : public Bird{

// cannot fly

}

make the base class weaker

eliminate the proposed inheritance relationship

Kristjan Haule, 2012 –43–

KH Computational Physics- 2012 Programming

Optimization

• Be aware of 80/20 rule

• Use successive memory (row-major) order

• Understand the origin of temporary objects

• Always prefer pass-by-const-reference to pass-by-value

• Facilitate the return value optimization

• Consider using op= instead of stand-alone op

• Avoid using virtual functions, multiple inheritance, virtual base classes, exception

handling

• Consider alternative libraries

Further reading : Effective C++ and More Effective C++ by Scott Meyers

Kristjan Haule, 2012 –44–

KH Computational Physics- 2012 Programming

Templates and Generic programming
Templates are a feature of the C++ programming language that allow code to be written without consideration of the data type with

which it will eventually be used. Templates support generic programming in C++.

Templates provide a way to represent a wide range of general concepts and algorithms and simple ways to combine them (STL).

Templates provide direct support for generic programming, that is, programming using types as parameters.

Most importantly, templates are instantiated at compile-time. For numerics this is of extreme importance because there is no

performace cost. The price one pays is longer compilation time. Whit increases of computational power, this is hardly a problem

nowadays (Expression templates, however, might slow down compilation dramatically).

The simplest example of a template

template<class T>

inline T sqr(T x)

{

return x * x;

}

One could also write <typename T> instead of <class T> . Type T can be eny type, either double, int, complex or any user

defined type one could think of. The only requirement for user-defined type is that it implements multiplication (operator *).

Usage of templates is extremely simple

int ia = 2;

int ib = sqr(ia); // Compiler implements version of sqr for ty pe int

double da = 2.0;

double db = sqr(da); //Compiler implements new version of sq r for type double

complex<double> ca(2.0,0);

complex<double> cb = sqr(ca); //Compiler implements new ve rsion of sqr for type complex

Kristjan Haule, 2012 –45–

KH Computational Physics- 2012 Programming

Implementing template is thus equivalent to implement function for each class separately (much more user work).

More importantly, one can write general algorithms using templates and abstraction is done in the process of coding a template.

One example are standard containers. One can use vectors of any type, also user defined type, maps of any type (very powerful

objects implementing hashes). We can also improve the definition of our container function above and make it a template. We will

need functions of type double, complex, int, and many more.

template <class T>

class function{

protected:

T * f;

int N;

public:

function(): f(NULL), N(0) {};// default constructor neede d for arrays.

explicit function(int N_); // No conversion allowed

function(const function&); // Copy constructor

˜function(); // Destructor

int size() const { return N;}

T& operator[](int i) // returns reference, thus allows modi fing class

{ if(i>=N) cerr<<"Out of range in function[]"<<endl; retur n f[i];}

const T& operator[](int i) const// returns const ref. Neede d when declared const

{ if(i<N) cerr<<"Out of range in function[]"<<endl; return f[i];}

}

template <class T>

inline function<T>::function(int N_)

{ f = new T[N_];}

function<double> fund(N); // A function with N double numbe rs is declared
Kristjan Haule, 2012 –46–

KH Computational Physics- 2012 Programming

function<dcomplex> func(N) // Function of complex numbers

function<function<int> > fun2(N); // Two dimentional func tion of integers

vector<function<complex<double> > > func3; // Two dimenti onal complex function

map<dcomplex,function<dcomplex> > hash;//sorted associ ative containers containing

//unique key/value pairs.

Root finding routines were always a real pain until templates ”were born”. Why?

With templates, one can write a general purpose root-finding routine that works with any user define class. Here is an example

template <class functor>

inline double zeroin(

const double ax, // Specify the interval the root

const double bx, // to be sought in

functor& f, // Function under investigation

const double tol) // Acceptable tolerance

{.....}

The routine can be tested with a simple function like this

double f_simple(double x){return};

but can also be used with any objects which defines operator()

class Complicated{

.....

public:

double operator()(double x);

};

Complicated cmp;

Kristjan Haule, 2012 –47–

KH Computational Physics- 2012 Programming

double solution = zeroin(a,b,cmp,1e-12);

Why is this so useful? Because we can avoid using global variables. Data can be encapsulated in certain object, and the object

just needs to implement operator() and zero can be found without giving hidden data to outside world.

We will see very nice example in ”Density functional theory” part of the course where solution of Schroedinger equation is used to

find bound states - energy at which solution of Schroedinger equation satisfies boundary conditions. The variable that one varies is

the energy of the state and its value has to be such that the wave function is zero at origin. Data to solve the Schroedinger

equation are encapsulated and hiden iside certain class and a static function can not access them. To use usual root finding

routines, one would need to make many variables (or whole class) global. The solution with templates is simple: the class needs to

implement ”operator()” and zero can be found with the above routine.

For demonstrative purposes, lets consider simple case of cubic function which depends on variables a, b, c and d:

f(x) = a + bx + cx2 + dx3 . Variables a...d are determined in some complicated way somewhere inside a function or

class member. We certainly do not want to declare them as global variables. However, we can not evaluate f(x) without knowing

them. The solution with templates is simple. In the place where root needs to be find, we write

int a,b,c,d;

Get_abc_complicated(a,b,c,d,....);

functor pack(a,b,c,d);

double solution = zeroin(start_interval, end_interval, p ack, tolerance);

class functor needs to be defined somewhere above

class functor{

double a,b,c,d;

public:

functor(double a_, double b_, double c_, double d_) : a(a_), b(b_), c(c_), d(d_){};

double operator()(double x){return a+x * (b+x * (c+x * d));}

};

Kristjan Haule, 2012 –48–

KH Computational Physics- 2012 Programming

There are many nice example of generic algorithms implemented in STL, for example sort. If we define new data type, and want to

sort an array of objects, we do not need to implement sorting routine. It is implemented in STL. All we need to do is to define

operator less than and we can use STL sort. Here is an example:

class A{

....

friend bool operator<(const A& m, const A& n);

};

bool operator<(const A& m, const A& n) {...}

.....

vector<A> v(N);

....

sort(v.begin(),v.end());

Kristjan Haule, 2012 –49–

KH Computational Physics- 2012 Programming

The Standard Template Library
The STL has three fundamental concepts: containers, iterators, and algorithms.

Containers hold collections of objects. Iterators are pointer-like objects that let you walk through STL containers just as you’d use

pointers to walk through built-in arrays. Algorithms are functions that work on STL containers and that use iterators to help them do

their work.

At its core, STL is very simple. It is just a collection of class and function templates that adhere to a set of conventions. There’s no

big inheritance hierarchy, no virtual functions, none of that stuff. Just some class and function templates and a set of conventions

to which they all subscribe.

Which leads to another revelation: STL is extensible. You can add your own collections, algorithms, and iterators to the STL family.

Kristjan Haule, 2012 –50–

KH Computational Physics- 2012 Programming

Some of the containers implemented are

• sequences containers

– vector

– list - optimized for insertion and deletion of elements. The operator[] not provided

– deque - optimized for insertion at the beginning and end. It has operator[] .

– stack - push back and pop back fast, no operator[]

– queue - allows insertion at the back and extraction at front

• associative

– map - sequence of (key/value) pairs which provide fast retrieval based on key

– multimap - map which allows duplicate keys

– set - like map but withouth values. Only keys

– multiset - duplicate keys

• valarray - vector optimized for numerics computations

• string

• bitset - set of flags (might be useful for ED)

The truth is that valarray was not implemented in gcc until re cently. Even now, it seems not to be really optimized.

Please, check out your compiler weather valarray is faster t han vector and how much.

Typical algorithms implemented is STL are: finding certain element in container, sorting, finding minimal, maximal element, finding

permutations of elements, copying of a collection of elements, search and replace, transformation of all elements according to

certain rule,...

Kristjan Haule, 2012 –51–

KH Computational Physics- 2012 Programming

Homework

• Promote your Matrix and Vector class to template, which can store any type of data.

• implement member function C.Product(A,B) and C = A*B which calls lapack subroutine

dgemm for real matrix multiplication and zgemm for complex matrix multiplication.

Kristjan Haule, 2012 –52–

KH Computational Physics- 2012 Programming

Perl

Perl is very suitable for small scale projects of the order of 100 lines of code which are not

computationally intensive - is interpreter. It offers much more flexibility than C++ or other

”older” languages.

It is extremely usefull for working with files and text manipulation: transforming or changing

files, changing strings in many large files,... It is used in many web based applications

(cgi-bin) and even supports object-oriented (OO) programming. Many graphical user

interfaces which run in web browsers are written in perl.

Perl comes with very useful man-pages. Type

man perl

and for short introduction

man perlintro

and you can learn perl in few minutes. Perl has probabbly the biggest resources and largest

community on the web of all programming languages.
Kristjan Haule, 2012 –53–

KH Computational Physics- 2012 Programming

HelloWorld program can not be simpler than that

#!/usr/bin/perl

print "Hello, World!\n";

Each perl program can start with a line containing path to perl interpreter. To execute this

script, one just needs to add executable flag to script (chmod +x name of your script) and

run it. Alternatively, one can omit first line and run it with perl prepended

perl name_of_your_script

Below are some simple examples of using perl variables, arrays and hashes

$a = 5; # scalar variable

@b = (1,2,3); # array variable

%c = ("apple", "red", "banana", "yellow"); # hash, just like map in C++

$sum = $b[0]+$b[1]+$b[2]; # summation of elements

print "Color of apple is ", $c{"apple"}, "\n"; # access hash e lements

@kys = keys(%c); # stores all keys to array

print "fruits are @kys\n"; # and prints them

Perl is so popular because it is very easy to use and mainly because of its powerful built-in
support for text processing. This powerful machinery is called ”regular expressions”. It is
very simple to write rules (regular expressions) which can find certain substrings, replace
certain substrings or write some reports out of complicated data which needs to be
analyzed. Building blocks are symbols which match various characters

Kristjan Haule, 2012 –54–

KH Computational Physics- 2012 Programming

• . - a single character

• \s - a whitespace character (space, tab, newline)

• \S - non-whitespace character

• \d - a digit (0-9)

• \D - a non-digit

• \a - word character (az, AZ, 09,)

• \W - a non-word character

• [aeiou] - matches a single character in the given set

• [ˆaeiou] - matches a single character outside the given set

• (foo |bar |baz) - matches any of the alternatives specified

• ˆ - start of string

• $ - end of string

Regular expression for a real number:

$r_n = "-?[0-9]+\.?[0-9] * [e|E]?-?[0-9] * ";

Quantifiers (how many of the previous thing you want to match on)

• * - zero or more of the previous thing

• + - one or more of the previous thing

• ? - zero or one of the previous thing

• {3} - matches exactly 3 of the previous thing

• {3,6} - matches between 3 and 6 of the previous thing

• {3,} - matches 3 or more of the previous thing

Kristjan Haule, 2012 –55–

KH Computational Physics- 2012 Programming

A trivial example of perl usage

This loop reads from STDIN, and prints non-blank lines

while (<>) {

next if /ˆ$/;

print;

}

line 1 diamond operator <> is equivalent to <STDIN> and reads a line from STDIN and stores into variable $_

line 2 this line is equivalent to if(/ˆ$/){next;} . If empty line is matched, the rest of lines in the loop are skipped

line 3 prints variable $_

Next example reads any number of files containing few columns and transformes them in ”user defined way”. We will first give

examples of usage of the script and than code the script. Script called strans can do the following

strans datafile1 ’#1’ ’2 * #2’ ’#3/2.’

strans datafile1 ’#1’ ’abs(#2+#3 * i)’ ’Re(1/(#2+#3 * i))’ ’Im(1/(#2+#3 * i))’

strans datafile1 datafile2 ’#1’ ’(#2+#2:2) ** 2 + (#3+#2:3) ** 2’ ’(#4+#2:4) * ferm(#1/0.01)’

line 1 prints first three columns of data file and multiplies the second column with 2 and divides the third column by 2

line 2 second and third column are treated like real and imaginary part of a complex function. First column is copied, second

column prints absolute value of the complex function, the third and fourth columns print real and imaginary part of the inverse

of the complex function, respectively.

line 3 two data files are merged in the following way: first column of the first file is copied, the second column is the sum of second

columns squared, the third is the sum of third coulmns squared, the fourth column is sum of fourth columns multiplied by the

fermi function

Kristjan Haule, 2012 –56–

KH Computational Physics- 2012 Programming

The following script will work in the above specified way

#!/usr/bin/perl

use Math::Trig; # includes trigonometric functions

use Math::Complex; # includes support for complex function s

push @files, "<&STDIN" unless -t STDIN; # stdin is treated li ke any other file

foreach (@ARGV){

if (-s $_){ # if file exists, it mush be function name

push @files, $_;

} else{

push @trans, $_; # otherwise it is an expression for trans

}

}

foreach (@trans)

{

in any user defined rule, it replaces symbol # by spl in the fo llowing way

#2:3 -> $spl[1][2]

#3 -> $spl[0][3]

s/\#(\d+):(\d+)/\$spl\[${\($1-1)}\]\[${\($2-1)}\]/g ;

s/\#(\d+)/\$spl\[0\]\[${\($1-1)}\]/g;

}

foreach (@files){ open $_, $_;} # All files being transforme d are opened

@{$spl[0]} = (’ ’); # object spl is initialized

Kristjan Haule, 2012 –57–

KH Computational Physics- 2012 Programming

Main loop

LB: while (defined($spl[0][0])){ # goes ower all columns

$i=0;

foreach $f (@files){ # goes ower all files

$_ = <$f>; # reads one line from this file

if (/\#/){ # if the file is commented, just print it and do noth ing

print; $_ = <$f>; # read next line in this case

}

@{$spl[$i++]} = split(’ ’,$_); # saves the contents of the fi le into two dimentional

} # array spl[i][j] containing j-th column of i-th

if (not defined($spl[0][0])){ # If first column does not exi st, we reached end-of-file

last LB; # or end of continuous lines region of file -> finish

}

$line = ""; # the output line initialized

foreach $col (@trans){ # each column of each file is being pro cessed

$val = eval $col; # the code for this column, as prepared above , is being

$line .= $val . " "; # evaluated (core step)

} # the transformed column is glued together into a line

print "$line\n"; # Finally, print out the resulting row

}

sub ferm{ return 1.0/(exp(@_[0])+1);} # An example of fermi function which can be used

sub nbose{ return 1.0/(exp(@_[0])-1);} # and bose function

Kristjan Haule, 2012 –58–

KH Computational Physics- 2012 Programming

Interpretes like Perl or Phython are very useful for writting wrapper script for fast plotting of data. The script most often calles other

plotting programs like gnuplot or xmgrace . One such script is provided in this lecture (find it on the web). Examples of its

use are

plot data

plot -u1:2,1:3 -wlp -g data *
plot -x-1:1 -y-10:10 -uall data[1-2]

plot -x-1:1 -xt0.2 -cpcolor -u1:3 data[1-2]

plot -u1:2 -wlp data1 -u1:3 -wp data2

line 1 plots xy plot with first column as x and second column as y

line 2 plots second and third column of all files, whose name starts with data, using first column as x. Uses lines and points (default

uses lines only). It also adds gridlines (-g)

line 3 plots all columns in both data1 and data2. The first column is again used for x axes. The x range is set between -1 to 1 and y

range for -10 to 10.

line 4 plots data1 and data2 using column 1 and column 3. The xtics are set to 0.2 and x range is again set between -1 and 1.

Results are not plotted to screen but rather printed using printer specified in pcolor script.

line 5 plots data1 using first and second column and data2 using first and third column. The first curve is plotted with lines and

points while the second uses points only.

Kristjan Haule, 2012 –59–

	Hello World
	Variables and Constants
	Input and Output
	Conditional Processing
	Looping
	Pointers
	File Input and Output
	References
	References in a function call
	Object oriented programming

