
KH Computational Physics- 2019 QMC

Parallel programming

Modern parallel programing has two pillars: open-MP and MPI.

• openMP:

– is used only for parallelization across multiple cores on the same node.

– is part of the compiler, and is typically invoked by ”-openmp” (or ”-fopenmp”) option

when compiling. The code needs to contain ”#pragma” statements.

• MPI :

– is primarily used for parallelization across multiple nodes (although it works also on

a single node).

– is implemented as add-on library of commands. A proper set of MPI calls to the

library will allow parallel code execution.

– Hybrid: This is the combination of MPI and openMP parallelization whereby

openMP is used inside a single node, and MPI across different nodes.

Kristjan Haule, 2019 –1–

KH Computational Physics- 2019 QMC

A fundamental difference between MPI and openMP is that in the latter all threads can

access the same memory (so called shared memory available to all threads), while in MPI

every thread can access only its own memory. To communicate between threads, MPI

command needs to be issued, which is typically very expensive.

On the harware level, every MPI commands results in the network traffic between nodes,

which is expensive (latency problem). In openMP all threads are running on the same

motherboard, and hence access the same RAM.

Kristjan Haule, 2019 –2–

KH Computational Physics- 2019 QMC

M P I = Message Passing Interface.

It is a standardized collection of routines (functions) which is implemented for each

programing language (fortran, C, C++, Python).

It was first standardized in 1994 (MPI-1.0) and second in 1997 (MPI-2.0) and (MPI-3.0)

after 2012. Currently MPI-2.0 is most widely used.

Standard is available at https://www.mpi-forum.org/docs/

Many implementations of the standard are available (see

http://en.wikipedia.org/wiki/Message_Passing_Interface)

The two most widely used implementations are MPICH

http://www.mpich.org

and open-MPI

http://www.open-mpi.org

(Note that open-MPI has nothing to do with openMP)

I will demonstrate examples using open-MPI (http://www.open-mpi.org) and

for Python implementation mpi4py

Kristjan Haule, 2019 –3–

https://www.mpi-forum.org/docs/
http://en.wikipedia.org/wiki/Message_Passing_Interface
http://www.mpich.org
http://www.open-mpi.org
http://www.open-mpi.org

KH Computational Physics- 2019 QMC

(https://mpi4py.readthedocs.io/en/stable/.

If you want to follow, you might want to install both.

There is a lot of literature available (”google MPI”).

• http://mpitutorial.com

• http://www.llnl.gov/computing/tutorials/mpi/#What

• https://www.youtube.com/watch?v=kHV6wmG35po

Kristjan Haule, 2019 –4–

https://mpi4py.readthedocs.io/en/stable/
http://mpitutorial.com
http://www.llnl.gov/computing/tutorials/mpi/#What
https://www.youtube.com/watch?v=kHV6wmG35po

KH Computational Physics- 2019 QMC

Brief history:

• 1980s - early 1990s: Distributed memory, parallel computing develops, as do a number

of incompatible software tools for writing such programs - usually with tradeoffs

between portability, performance, functionality and price. Recognition of the need for a

standard arose. MPI Evolution

• April, 1992: Workshop on Standards for Message Passing in a Distributed Memory

Environment, sponsored by the Center for Research on Parallel Computing,

Williamsburg, Virginia. The basic features essential to a standard message passing

interface were discussed, and a working group established to continue the

standardization process. Preliminary draft proposal developed subsequently.

• November 1992: - Working group meets in Minneapolis. MPI draft proposal (MPI1) from

ORNL presented. Group adopts procedures and organization to form the MPI Forum.

MPIF eventually comprised of about 175 individuals from 40 organizations including

parallel computer vendors, software writers, academia and application scientists.

• November 1993: Supercomputing 93 conference - draft MPI standard presented.

• Final version of draft released in May, 1994 - available on the at:

Kristjan Haule, 2019 –5–

KH Computational Physics- 2019 QMC

http://www-unix.mcs.anl.gov/mpi.

• MPI-2 picked up where the first MPI specification left off, and addressed topics which

go beyond the first MPI specification. The original MPI then became known as MPI-1.

MPI-2 is briefly covered later. Was finalized in 1996.

• Today, MPI-2 is widely used.

MPI is available for Fortran, C and C++ and Python... We will present examples for C++

and Python. Commands have the same name in all languages, but calls to routines differ

slightly.

• MPI is large! It includes 152 functions.

• MPI is small! Many programs need only 6 basic functions.

Kristjan Haule, 2019 –6–

KH Computational Physics- 2019 QMC

Typical structure of a parallel code is organized as follows:

Kristjan Haule, 2019 –7–

KH Computational Physics- 2019 QMC

minimal C++ code (see
http://www.physics.rutgers.edu/˜haule/509/MPI_Guide_C++.pdf
for details)

#include <mpi.h>

#include <iostream>

using namespace std;

int main(int argc, char *argv[])

{

MPI_Init(&argc, &argv);

int mpi_size, my_rank;

MPI_Comm_size(MPI_COMM_WORLD, &mpi_size);

MPI_Comm_rank(MPI_COMM_WORLD, &my_rank);

cout<<"Hello world from core "<<my_rank<<" out of all "<<mpi_size<<endl;

MPI_Finalize();

return 0;

}

minimal Python code using my4py:

#!/usr/bin/env python

from mpi4py import MPI

comm = MPI.COMM_WORLD

mpi_size = comm.Get_size()

rank = comm.Get_rank()

name = MPI.Get_processor_name()

print "I am processor %d of %d with name %s." % (rank, mpi_size, name)

Kristjan Haule, 2019 –8–

http://www.physics.rutgers.edu/~haule/509/MPI_Guide_C++.pdf

KH Computational Physics- 2019 QMC

To compile C++ code, we need to execute

mpic++ -o example1 example1.cc

To execute the example, we should issue

mpirun -n 4 example1

This will run the code on 4 cores on the local node. If one wants to run on multiple nodes,

these nodes need to be properly configured into the common network. User needs to

provide ”machine file” (list of machine names) and and the following option to mpirun

mpirun -hostfile <hostfile> -n 4 example1

Kristjan Haule, 2019 –9–

KH Computational Physics- 2019 QMC

Kristjan Haule, 2019 –10–

KH Computational Physics- 2019 QMC

Kristjan Haule, 2019 –11–

KH Computational Physics- 2019 QMC

Kristjan Haule, 2019 –12–

KH Computational Physics- 2019 QMC

Example of Monte Carlo integration on multiple cores using MPI

#include <cmath>

#include <iostream>

#include <mpi.h>

using namespace std;

static const double exact = 1.3932039296856768591842462603255;

double g(double* x)

{

return 1./(1.0 - cos(x[0])*cos(x[1])*cos(x[2]))/(M_PI*M_PI*M_PI);

}

int main(int argc, char *argv[])

{

/* Brute force Monte Carlo to compute an integral of the 3D function:

1/(1-Cos[x]*Cos[y]*Cos[z])

in the interval (x,y,z) in [0,Pi],[0,Pi],[0,Pi]

*/

MPI_Init(&argc, &argv);

int mpi_size, my_rank; // How cores and which processor is this

MPI_Comm_size(MPI_COMM_WORLD, &mpi_size);

MPI_Comm_rank(MPI_COMM_WORLD, &my_rank);

int iseed = time(0)+10*my_rank; // Each processor should start from different random sequence.

srand48(iseed); // Set iseed

int N = 10000000;

double ave=0.0; // average

double av2=0.0; // averageˆ2

for (int i=0; i<N; i++){

double kv[3] = {drand48()*M_PI, drand48()*M_PI, drand48()*M_PI};

double f = g(kv);

ave += f;

Kristjan Haule, 2019 –13–

KH Computational Physics- 2019 QMC

av2 += f*f;

}

ave=ave/N; // now we have average

av2=av2/N; // and averageˆ2

double Vol = M_PI*M_PI*M_PI; // Volume of the region

double Int = Vol*ave; // Integrals is Vol*<f>

double Int2 = Vol*Vol*av2; // For error we also need Volˆ2 * <fˆ2>

double err = sqrt((Int2-Int*Int)/N); // This is standard deviation/N : sigmaˆ2 = ((<f>*Vol)ˆ2 - <fˆ2>*Volˆ2)

cout<<"Integral="<<Int<<" Error="<<err<<" approximation-exact="<<Int-exact<<endl;

double res[2]={Int,Int2};

double res_sum[2];

MPI_Reduce(res, res_sum, 2, MPI_DOUBLE, MPI_SUM, 0, MPI_COMM_WORLD);

if (my_rank==0){

cout<<"*** Average over all processors ***"<<endl;

double Int = res_sum[0]/mpi_size; // Average just sums up

double Int2 = res_sum[1]/mpi_size; // Also averageˆ2 just sums up

double err = sqrt((Int2-Int*Int)/(N*mpi_size)); // New error, which is now divided by (N*mpi_size),

cout<<"Total Int="<<Int<<" Total err="<<err<<" approximation-exact="<<Int-exact<<endl;

}

MPI_Finalize();

return 0;

}

Kristjan Haule, 2019 –14–

KH Computational Physics- 2019 QMC

The same algorithm in Python using Pypar:

#!/usr/bin/env python

from scipy import *

import pypar # The Python-MPI interface

import random

def g(x):

return 1./(1.0 - cos(x[0])*cos(x[1])*cos(x[2]))/pi**3

if __name__ == ’__main__’:

mpi_size = pypar.size()

my_rank = pypar.rank()

my_name = pypar.get_processor_name()

random.jumpahead(my_rank) # different random number start on each processor

N = 100000

ave=0.0

av2=0.0

for i in range(N):

f = g(array([random.random(),random.random(),random.random()])*pi)

ave += f

av2 += f*f

ave=ave/N # now we have average

av2=av2/N # and averageˆ2

Vol = pi**3 # Volume of the region

Int = Vol*ave # Integrals is Vol*<f>

Int2 = Vol*Vol*av2 # For error we also need Volˆ2 * <fˆ2>

Error = sqrt((Int2-Int*Int)/N) # This is standard deviation sigmaˆ2 = ((<f>*Vol)ˆ2 - <fˆ2>*Volˆ2)/N

print "Integral=", Int, "Error=", Error

res=array([Int,Int2])

sum_res=zeros(2)

Kristjan Haule, 2019 –15–

KH Computational Physics- 2019 QMC

pypar.reduce(res, pypar.SUM, 0, buffer=sum_res) # This is the crucial MPI call

if my_rank==0:

Int = sum_res[0]/mpi_size

Int2 = sum_res[1]/mpi_size

Error = sqrt((Int2-Int*Int)/(N*mpi_size))

print "Final Integral=", Int, "Error=", Error

pypar.finalize()

We again compile C++ code with the command

mpic++ -o example2 example2.cc

and execute by

mpirun -n 4 example2

The Python code does not need compilation. Make the Python script executable (chmod

a+x example2.py). Then execute by

mpirun -n 4 example2.py

Kristjan Haule, 2019 –16–

KH Computational Physics- 2019 QMC

Some useful tips:

• Alwyas parallelize the most outside loop. Do not parallelize inside loops! This will

minimize the communication.

• Avoid using many MPI calls. Try to combine MPI calls. Do not use multiple

’send-receive’ calls if you can use Broadcast or Gather,....

• Every MPI call takes some minimum amount of time (it is expensive) and typically all

processors need to wait at the point of MPI call. MPI call slows down all processors.

• Always develop and test serial code first. Parallel job is very hard to debug!

• Some algorithms are easy to parallelize. Some inpossible. Test if more processors

gives you better performance. Sometimes gives you even worse!

• In parallel programming, the ”minimum amount of work” strategy does not apply. The

amount of communication has to be minimized because communication is usually slow.

Kristjan Haule, 2019 –17–

KH Computational Physics- 2019 QMC

For example.

• Master reads some data. Other processors wait for the master

• MPI::Broadcast is used to transfer the data to slaves

• Each processors performs part of the work

• The common part of the work could be performed on master only. Let’s call MPI::Gather or

MPI::Reduce and perform common part of the computation on Master. When finished, master

distributes the result by MPI::Broadcast

• Each processor continues with its own task

• Finally the results are merged together with MPI::Gather or MPI::Reduce

Much more efficient sheme is

• Every processor reads the data and immediately starts with work.

• Each processors performs part of the work

• Each processor performs the common part of the work. It does not take more time. All

processors repeat the same calculation, but the MPI call can be skipped.

• Each processor continues with its own task

• Finally the results are merged together with MPI::Gather or MPI::Reduce
Kristjan Haule, 2019 –18–

