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Interpolation

The objective is to find value of the function at any point x if one has values f; tabulated at

certain points x;.

Most straightforward (never dramatically fails) and safe method is linear interpolation:
flx)=f; + m:’jrlfz (fix1 — fi). The hardest part is to find integer 7 such that

T < T < Tjyq1.

If one needs interpolation in non-correlated points x, the best algorithm is bisection (needs
log, N evaluations). However, most of the time, one needs points at increasing (or
decreasing) values x. In this case, it is desirable to store previous position 7 in table, and
one can start to search from this old point. One should check first if x is stil in the interval
[x;, £;11], if not, one should check weather it is in [x;1.1, Z;12], .... than one should use
bisection in small interval [ng, $i+M+1] for some integer M of the order of 10. If this

does not work, one should use bisection on the rest of the grid. Since this occurs very

dom._bisection |
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Here is the implementation

inline int mesh::find_(double x, int& ai0) const
{ /I This is most often called searching routine

}

/I It is used for searching table in increasing order

if (x<oml[aiO+1]) return aiO; // Checks weather x is stil in [a i0:ai0+1]
int ail = ai0+1; /I Makes a step
if (ai0>=N-2) return aio; /I Needs to check for the end of the t able
if (x<om[ail+1])}{ /I Checks weather x is in [ai0+1:ai0+2]
ai0 = ail;
ail = ail+l;
return aio;
}
if (ail>=N-2) return ail; // Again checks for the end of the ta ble
ail0 = ail+l; /I makes another step
if (ail+dN<N) /I First uses bisection is small interval bet ween [ail:ail+dN]

if (x<om[ail+dN]) return bisection (x, ai0, ail, ail+dN+1) ;
} else return bisection (x, ai0, ail, N);
if (ail+dN<N-1) ai0 = ail+dN;// If still not found, use bisec tion on the rest of the grid
else ai0 = ail+dN-1;
return bisection (x, ai0, ail, N);

The implementation of simple interpolation can be done using two large classes: mesh and function . The interaction is

mantained through a small class for interpolation which contains the position in the table and interpolating coefficient.

Here is the implementaion of the class containing x values:
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class mesh{
protected:
int N, NO; /I size, size of the allocated memory (might be larg er than size)
double *om; /I grid points
static const int dN = 10; // when searching ordered table, sea rching is done first between a0 and aO+dN...
protected:
mesh(): N(0),NO(0),om(NULL),delta(NULL),dh(NULL){}; / / constructor is made protected such that mesh can not be inst
"mesh(){}; /I This class is used only as base class
public:
// OPERATORS
double& operator[](int i) {Assert(i<N,"Out of range in mes h]"); return oml[i];}
const double& operator[](int i) const {Assert(i<N,"Out of range in mesh[]"); return om[i];}
/l ROUTINES FOR SEARCHING ORDERED TABLE
int find(double x) const; /I searching table if previous pos ition is not known
int find_(double x, int& ia) const; // searching table forwa rd from previous position
int _find(double x, int& ia) const; // searching table backw ard from previous position
int findBoth(double x, int& ia) const; // searching table in both direction - point is usually close
/I LINEAR INTERPOLATION ROUTINES - INITIALIZATION
tint InitinterpLeft() const {return 0;} /I Initialization of position for forward search
tint InitinterpRight() const {return N-2;} // Initializat ion of position for backward search
/Il LINEAR INTERPOLATION ROUTINES
intpar Interp(const double x) const; /I Finds parameters fo r linear interpolation at point X
intpar InterpLeft(const double x, tint& a) const; // Finds p arameters for linear interpolation when fregeuncy is incre
intpar InterpRight(const double x, tint& a) const; // Finds parameters for linear interpolation when freqeuncy is decr
intpar InterpBoth(const double x, tint& a) const; // If freq uency is believed to be close to previous frequency
private:

int bisection(double x, int& klo, int& khi, int bi) const;

3
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There are actually four different routines for searching:
a) find : straighforward bisection in case there is no information about previous position in table
b) find_ : searching in increasing order (starting from previous position)

c) _find : searching in decreasing order (starting from previous position)

d) findBoth :if new x is most probably close to previous position but not clear whether before or after.

Interpolation is done by four different functions
a) Interp(x)
b) InterpLeft(x,previous_position)
c) InterpRight(x,previous_position)

d) InterpBoth(x,previous_position)
In case of linear interpolation, all four functions above return small class intpar

class intpar{
public:
int i;
double p;
intpar(int i_, double p_ ) : (i), p(p){}
intpar(){};
intpar(double d) : i(0), p(d) {};
2

Check implementation or implement yourself

Kristjan Haule, 2006



RUtgerS Computational Physics- 2006

Basic Numerical Algorithms

The second class is class function  which contains function values f;.

template<class T>
class function{
protected:
T *f;
int NO, N;
protected:
function() : f(NULL), NO(0), N(0) {}; // constructor is made
explicit function(int N_) : NO(N_), N(N_) {};// This class i
“function(){};
function(const function&){};
public:
/I OPERATOR FOR INTERPOLATION
T operator()(const intpar& ip) const; // linear interpolat
/I OTHER OPERATORS
T& operator](int i) {Assert(i<N,"Out of range in function
const T& operator[](int i) const {Assert(i<N,"Out of range
function& operator+=(const function& m);
function& operator *=(const T& m);
function& operator=(const T& c); // used for initializatio

%
Here is an example of the usage of above classes:

meshlD om, Xx;

function1D<double> f(om.size());

tint position = om.InitinterpLeft();  // Initialization of

for (int i=0; i<x.size(); i++){
intpar p = om.InterpLeft(x[i],position); // calculates lo
cout<<x[i]<<" "<<f(p)<<endl;
cout<<x[i]<<" "<<f(om.InterpLeft(x[i],position))<<en

}

/I x and om grid points do not c

/I operator()(intpar p) act

protected such that mesh can not be instantiated
s used only as base class

ion

0"; return f[i];}
in function[]"); return f[i];}

interpolation with increasing argument
oinside
cation in ordered table and interpolating coefficient
ually interpolates function f

dl; // Equivalent to the above two lines
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Like in case of integration, it is crucial to keep function on grid points, on which the function

IS resolved. Typical non-equidistant grids are
e logarithmic grids - are natural for highly peaked functions

e tan grid - is natural for lorentzian-like functions (is linear at small frequency and grows

fast at high frequency).

Sometimes it is desirable to combine various grids to resolve functions which contain a lot
of structure. We will show here how to combine logarithmic grid at low frequency and
tan-grid at high frequency.

N, N,

X, log—mesh X, tan—mesh Xy

Input parameters of the grid are:
Start of the log-mesh x
Start of the tan-mesh 11
End of the mesh x»-

Total number of points N

Number of log-points /V;
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w; = exp (logajo + Nli_l log(i—é)> i €[0,Ny — 1] w € [xg, 1]

| (1)
w; = wtan(a + b%) i €[0,No — 1] w € (x1,x2]
The grid should be continuous with continuous derivative. We have
Tr1 = wtana (2)
ro = wtan(a + b) (3)
dw; log(x1/x w b
do = doi _loelzi/zo) ' (4)
d Ny —1 N5 cos® a
This system of equations can be solved by solving the following transcendental equations
tan u . tanu
u — arctan — = dwxr — 5 (5)
T 72 + tan® u

Hereu =a+ b, T = x2/x1, dw = log(x1/x9)Na /(N1 — 1).

This particular form of equation is most convenient for numerics, because it has either no

solutions or one solution in the interval u € [0, 7w/2].

Kristjan Haule, 2006 —7—



Rutgers computational physics- 2006 Basic Numerical Algorithms

The condition for solution is that the left-hand side part of equation should increase faster

than right-hand side, i.e., u — u/T > dwzu/Z?. This leads to the following condtion

> = 6
N, oy = (6)
equivalent to
1 N
N, > Y (7)
1+n

Instead of taking /V; and /N5 as input parameters, one can choose total number of points
NN and the coefficient o such that

1+nN 1
il ] ®)

N, =(1 L/ e
1 (+oz)[1+n+2
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Figure 1. Here is figure for the combined mesh with parameters rqo =

o = 10, N = 200 and various a’’s.
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Figure 2: Here we plotted function e_“”/\/i on the above mentioned grid. Its integral, using
trapezoid rule, is 1.772884 while the exact answer is /7 which is just 4 10~ off. However,
this agreement is accidental since the error should be around 1073 or larger. (Cutoff at small

Z is balanced by trapezoid approximation).
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Figure 3: The linear interpolation in case of concave function is always larger than the original
function. Here we see the difference between the linear interpolated function and the exact
function (this is errror due to linear interpolation) which is always positive. The integral of this
difference is 2.4 10~ which is a better estimate of the error due to trapezoid integration (==

error of linear interpolation).
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Splines

When linear interpolation is not good enough and if we believe that function is smooth
enough (smooth on the mesh it is specified), we might want to use higher order
interpolation. It turns out that the best of high-order interpolations is spline : pice-vice cubic
interpolation.

The idea is to require continuous first derivative and continuous second derivative. The

second derivative changes linearly between points x; to T;41.

If we denote the normalized difference between points

.CE—ZIZ‘j

p p—
Li+1 = &

the desired interpolation in the interval [z; — ;41| might be written in the form

1 1
Yy =pyj+1+(1-p) yffg[(1—19)3—(1—29)](%H‘%)Q?J;/Jrg[ 3—19](5’7j+1—93j)zy}’+1
9)
If we take the first derivative, and take into account that dp/dx = 1/(x;11 — x;) we get
vy _ Y~y 1

|
dr s 1 =301 =p)W@ja —25)yf — 2 [1 =321 — 2)yfr (10)
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Second derivative than becomes

d2y L 7 1 /1
g2 = PYi+ + (1 —p)y; (11)
and is therefore pice-vice linear (second derivative is continuous by construction and is

linearly interpolated between the points).

We do not have second derivatives, however, we need to require that first derivatives are
continuous. We thus need to equate g—z(p = 0) from the interval [z; — x;11] to be equal
to j—g(p = 1) from the interval [z;_1 — ;]. We thus have a system of linear symmetric

tridiagonal equations

LTitr1 — X451 Tirt1 — Xy
y;/_1‘|‘( J+ ; J )y3/+( J+6 j)y;'/—i—l (12)
_ Y1 Y Y Y- (13)
Tj+l —%j  Tj— Tj-1

(z; —mj-1)
§)

There are only /N — 2 equations because j is allowed to run between 1 and N — 2. We

need 2 additional conditions. There are two possibilities
e The second derivative is set to zero at both ends ("natural splines”)

e The first derivatives are given at both ends (They have to be known or estimated).
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In the second case, assuming the first derivative at xg is fo andatxy_1is fN we have

oy Ty = e, 0
TNy IV fy - I 2 g
If we take a vector of unknowns to be,
X = (¥0,91,¥2: " YN—3,Yn—2: YN 1) (16)
we need to solve the following equation
AX =B (17)
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where tridiagonal matrix to be inverted takes the form

(

\

r1—X0 r1—X0
- - 0 0 0 0
r1—xo To—X(Q r2—I]
5 3 = 0 0 0
To2—XT1q r3—I1q r3—Io
TN_2-TN-3 ZIN-1—TN-3 | TN—1—TN_2
6 3 6
0 TN_1—TN—2 | TN—1—TN—_2
6 3
Using short notation g = yi yo , the right-hand side of the tridiagonal system is

B = (Qo — fo, U1 — Yo, U2 — Uty UN-3 — UN—as UN—2 — UN—35 N — :QN—2,> (19)

In case of "natural splines”, we take

equation should be omitted (the first and the last row and column of the matrix).

= 0 and yx,_; = 0 therefore the first and the last

Kristjan Haule, 2006
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The alorithm for splinning is

e First solve the above system of tridiagonal linear equations to obtain y” (ones and for
all)

e Use the equation

1 1
y = (1=p) g tp Y+ [(1-p)° = (L=p)) (@1 =)0 + 5 [0° =l (g1 —25)° 4

(20)
to calculate value of the function at any point x. To search the order table, use the

above algorithm for linear interpolation.

Once we splined a function, we can use splines to evaluate integral or any other

transformation pice-vice analytically.

For the integral we have

Tj41 1 1
/ y(x)dzr = §(yj+1 +y;)(Tj+1 — T5) — ﬂ(y;/+1 + ) (@0 —25)° (1)

J
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One can get very precise Fourier transformation using splines

it o1+ du— e 1 —du)e™ —1
/ e“y(x)dr = Axe'@™ [yj > + Yjt+1 ( u)2

1 e (6 + u?) + 2(u? — 3iu — 3 6 + u? + 2e"“(u® 4 3iu — 3
L (o) 22 ) sy u( )

where Az = z;11 — x; and u = wAx For small w or small Az, the above equation is

not stable to evaluate. One needs to use Taylot expansion, which gives

Tj+1 . 1 i 1 21
/xj e y(x)dx = Axe*™™ [yj§(1 + gu) + yj+1§(1 + gu)
1 N 71 /) 81
—ﬂ(Aaf;) (yj (1+ 1—5u) + Y (1 + 1—5u)
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The implementation is surprisingly simple in the above scheme of classes. Class mesh
does not need to be changed, neither the small class Intpar . We can derive a class
splinelD from class function  adding some new members

template <class T>
class splinelD : public function<T>{

Tx f2; /I second derivatives
double =dxi; /[ x_{j+1}-x_]

public:
/[ CONSTRUCTORS AND DESTRUCTORS
splinelD() : f2(NULL), dxi(NULL) {};// default constructo r exists allocating arrays
/I constructor
splinelD(const meshlD& om, const function<T>& fu, // the fu nction being splined
const T& dfO=std::numeric_limits<double>::max(), // the derivatives at both ends
const T& dfN=std::numeric_limits<double>::max());
“splinelD(); /I destructor

splinelD(const splinelD& m); //copy constructor

// INITIALIZATION ROUTINES

void resize(int N_);

I/ OPERATORS

T operator()(const intpar& ip) const; // spline interpolat ion
splinelD& operator=(const splinelD& m); // copy operator

// ADVANCED FUNCTIONS

T integrate();

dcomplex Fourier(double om, const meshlD& xi);
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The system of equations is solved by calling LAPACK routine dptsv__ in the following way

template <class T>
inline splinelD<T>::splinelD(const meshl1D& om, const fun

{

if (om.size()!=fu.size()) cerr<<"Sizes of om and f are diff
resize(om.size()); // Calling constructor to initialize m
std::copy(fu.f,fu.f+N,f);
functionlD<T> diag(om.size()), offdiag(om.size()-1); /
/I Below, matrix and rhs is setup
diag[0] = (om[1]-om[0])/3.;
double dfu0 = (fu[1]-fu[0])/(om[1]-om][O]);
f2[0] = dfuO-dfo;
for (int i=1; i<om.size()-1; i++){
diag[i] = (om][i+1]-om[i-1])/3.;
double dful = (fu[i+1]-fu[i])/(om[i+1]-om[i]);
f2[i] = dful-dfu0;
dfu0 = dful;
}
diag[N-1] = (om[N-1]-om[N-2])/3.;
f2[N-1] = dfN - (fu[N-1]-fu[N-2])/(om[N-1]-om[N-2]);
for (int i=0; i<om.size()-1; i++) offdiag[i] = (om[i+1]-om
/I The system of symmetric tridiagonal equations is solved b
int one=1, info=0;
if (df0==std::numeric_limits<double>::max() || dfN==st
int size = N-2;// natural splines
dptsv_(&size, &one, diag.MemPt()+1, offdiag.MemPt()+1,
f2[0]=0; f2[N-1]=0;
} else dptsv_(&N, &one, diag.MemPt(), offdiag.MemPt(), f2

if (info!=0) cerr<<"dptsv return an error "<<info<<endl;
/I Setup of other necessary information for doing splines.
for (int i=0; i<om.size()-1; i++) dxi[i] = (om[i+1]-om[i])

ction<T>& fu, const T& df0, const T& dfN) : f2(NULL), dxi(NUL

erent in spline setup"<<endl;
emory

/ matrix is stored as diagonal values + offdiagonal values

[i/e.;
y lapack

d::numeric_limits<double>::max()}{
f2+1, &N, &info);

, &N, &info);
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The interpolation is trivial

template <class T>

T splinelD<T>::operator()(const intpar& ip) const

{

int i= ip.i; double p = ip.p, q=1-ip.p;

return q =f[i] + p =f[i+1] + dxi[i]
}

The integration is simple

template <class T>

inline T splinelD<T>::integrate()

{
T sum=0;
for (int i=0; i<N-1; i++) sum += 0.5
return sum;

}

*dxili]  *(q*(q*q-1) *f2fi] + p

* di[i]

* (fi+L]+[i]- (F2[i+1]+F2[i])

Basic Numerical Algorithms

*(p *p-1) =f2[i+1])/6.;

* di[i]

* dxi[i]/12.);
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and the Fourier transformation slightly more involved

template <class T>
inline dcomplex splinelD<T>::Fourier(double om, const me shlD& xi)
{
dcomplex ii(0,1);
dcomplex sum=0;
dcomplex val,
for (int i=0; i<N-1; i++) {
double u = om =+dxi[i], u2=u *U, u4=u2 *uz;
if (fabs(u)<le-4){// Taylor expansion for small u
val = 0.5 =(1.+4i =*(@/3.)) *f[iI+0.5  +(A.+ii  *(2+*u/3) =Af[i+1];
val -= dxi[i] * dxi[i]/24. *(f2[i]  *(1.+ii =7, *u/15.)+2[i+1] *(1.+ii  *8. xu/l5.));

telse{
dcomplex exp(cos(u),sin(u));
val = (ffi] *(L.+ii *u-exp) + fi+1] * ((1.-ii *U) * exp-1.))/u2;
val += dxi[i] * dXxi[i]/(6. *ud) = (f2[i]  *(exp *(6+u2)+2. = (u2-3. =*ii *u-3.))+f2[i+1]
}
sum += dxi[i] *dcomplex(cos(om =*xi[i]),sin(om * Xi[i])) *val;
}
return sum;

}

*(6+u2+2. *exp* (u2+3. *ii *u-3.)));

Kristjan Haule, 2006
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Figure 4: The spline interpolation of the same function e =% //x gives 2-3 orders of magni-
tude smaller error. The integral of spline from [107¢ — 10] is 1.7704363 while the exact
integral (v/merf (/7)) is 1.7704401, the error is thus 4 10~° which is roughly the integral

of the above function (5 10~ % is a good estimate for the error).
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Figure 5: The linear interpolation repeated. Just for easier comparison with spline interpola-

tion.
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Fourier transformation
2
| | | | | | | | | | | | |

B exp(-x)/sgrt(x)

sin(1/x) xmax=20

o
N
AN
(o)}
(00]
o
o
ol
o
o

20

Figure 6: Fourier transformation using splines of couple of "not-so well behaving” functions.
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