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Integration

Numerical integration strongly depends on the particular problem at hand. Most ofen one

uses adaptive mesh, sometimes the lowest order trapezoid rule and sometimes high order

quadratures like Simpson rule.

There are few, sometimes competing factors one needs to consider

• speed - number of function evaluations or grid points

• precision - sometimes we need 10−6, sometimes 1% is enough, but robustness is

required

• robustness - adaptive or ”smart” meshes with lower order routines
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It is important to carefully examin the function to be integrated. Here are the points to be

considered:

• How many dimensional integral? (more than 4 and low precision → Monte Carlo)

• Is function very smooth or is not? ([high—low] order routine)

• Is there any divergency or cusp?

– If divergency, can one change the variable of integration such that the divergency

dissapears?

– Can one locate the divergent point? (put additional points there - log mesh)

– Can one locate possible cusp? (divide integral into two parts)

– Can one subtract the divergency and calculate analytically the divergent part?

(usually very efficient)

• Is function given on grid points or is given analytically? (easier to examine function if

known analytically)
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• Trapezoid rule:
a) abcisas are non-equidistant

b) function is not very smooth

c) only moderate precision is required

∫

x2

x1

f(x)dx =
1

2
(f1 + f2)(x2 − x1) + O(h

3
) (1)

∫

b
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If the input parameter is precision rather than number of points N , one can evaluate the above rule for N points and than

split each interval into 2 to get 2N points, ....
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• Simpson’s rule:
∫
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• Another fourth order routine:
∫

b

a
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Implementation:

• Trapezoid for fixed number of points
template<class T, class functor>

T integrate_trapez_simple(functor& F, double a, double b, int N)

{// Trapezoid rule for fixed number of function evaluations

// N at points a, a+(b-a)/(N-1),...

double dh = (b-a)/(N-1);

T sum = 0.5 * F(a);

double x = a+dh;

for (int i=1; i<N-1; i++, x += dh) sum += F(x);

sum += 0.5 * F(x);

return sum * dh;

}
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• Trapezoid for given precision
template<class T, class functor>

T integrate_trapez(functor& F, double a, double b, double p recision=1e-5, int max_recursion=22)

{

T olds = 0, s = 0.5 * (F(a)+F(b)) * (b-a); // lowest order approximation

int m=1; // number of subdivisions

for (int i=0; i<max_recursion; i++, m * =2) { // m==2ˆ(i-2)

double dh = (b-a)/m; // This is the distance between points to be added at this stage

double x = a + 0.5 * dh; // first point added at

T sum = 0;

for (int j=0; j<m; j++, x+=dh) sum += F(x);

s = 0.5 * s + 0.5 * dh* sum; // The best approximation so far

if (i > 4 && fabs(s-olds) <= precision * fabs(olds)){ //Avoid spurious early convergence.

Logg("The integral step used =" << 0.5 * dh << " with " << m << " divisions");

return s;

}

olds=s;

}

std::cerr<<"Too many steps in routine integrate_trapez"< <std::endl;

return s; // The best approximation

}

Kristjan Haule, 2006 –6–



KH Computational Physics- 2006 Basic Numerical Algorithms

• Simpson for given precision
template<class T, class functor>

T integrate_simps(functor& F, double a, double b, double pr ecision=1e-5, int max_recursion=22)

{

T oldsm = 0, sm = 0; // simpson approximation

T olds = 0, s = 0.5 * (F(a)+F(b)) * (b-a); // trapezoid approximation, lowest order approxima tion

int m=1; // number of subdivisions

for (int i=0; i<max_recursion; i++, m * =2) { // m==2ˆ(i-2)

double dh = (b-a)/m; // This is the distance between points to be added at this stage

double x = a + 0.5 * dh; // first point added at

T sum = 0;

for (int j=0; j<m; j++, x+=dh) sum += F(x);

s = 0.5 * s + 0.5 * dh* sum; // The best approximation so far

sm = (4 * s-olds)/3.; // This is the first fifference with trapezoid

if (i > 4 && fabs(sm-oldsm) <= precision * fabs(oldsm)){ //Avoid spurious early convergence.

Logg("The integral step used ="<<0.5 * dh<<" with "<<m<<" divisions");

return sm;

}

olds=s;

oldsm=sm;

}

std::cerr<<"Too many steps in routine integrate_simps"<< std::endl;

return sm; // The best approximation

}
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• Another fourth order routine for fixed number of points
template <class T, class functor>

T integrate4(functor& F, double a, double b, int Np)

{ // Forth order integration routine with equidistant mesh

static double coeff[4] = {17./48., 59./48.,43./48.,49./4 8.};

double dh = (b-a)/(Np-1), x = a;

T sum = 0;

for (int i=0; i<4; i++, x+=dh) sum += coeff[i] * F(x);

for (int i=4; i<Np-4; i++, x+=dh) sum += F(x);

for (int i=Np-4; i<Np; i++, x+=dh) sum += coeff[Np-1-i] * F(x);

return sum * dh;

}
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• Fully adaptive mesh for integration
This part of the code first puts Nmin number of equidistant points into list x. Then it recursively subdivides each interval as

long as the difference between function values is larger than predefined precision.

template <class functor>

void mesh(list<double>& x, list<double>& f, const functor & fun, double a, double b, int Nmin=9,

{

// This function constructs an adaptive mesh for function f.

// The mesh is recursively subdivided until the difference b etween the function values

// or there were more than Max_level subdivisions - recursio n steps.

// This function creates a list for mesh and a list of function values.

for (int i=0; i<Nmin; i++) {

double x0 = a + (b-a) * i/(Nmin-1.);

x.push_back(x0);

f.push_back(fun(x0));

}

list<double>::iterator xit = x.begin();

list<double>::iterator fit = f.begin();

vector<list<double>::iterator> xiter(x.size());

vector<list<double>::iterator> fiter(x.size());

for (int i=0; i<x.size(); i++){

xiter[i] = xit;

fiter[i] = fit;

xit++;

fit++;
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}

for (int i=0; i<xiter.size()-1; i++){

int level=0;

recurs(x, f, fun, xiter[i], fiter[i], precision, Max_leve l, level);

}

}
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This part of the code recursively subdivides interval as long as the precision is not met, or, the interval is divided more than

Maxlevel times.

template <class functor>

void recurs(list<double>& x, list<double>& f, const funct or& fun, list<double>::iterator

// Recursive algorithm inserts points into the mesh if the fu nction values

// differ more than precision

// Recursion can not go deeper than Max_level

list<double>::iterator fip = fit; fip++;

list<double>::iterator xip = xit; xip++;

if (fabs( * (fit)- * (fip))<precision || level>Max_level){

return;

} else{

double x_new = 0.5 * (( * xit)+ ( * xip));

list<double>::iterator xin = x.insert(xip, x_new);

list<double>::iterator fin = f.insert(fip, fun(x_new));

recurs(x, f, fun, xit, fit, precision, Max_level, level+1) ;

recurs(x, f, fun, xin, fin, precision, Max_level, level+1) ;

}

}
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Example: Calculation of the two dimensional tight-binding density of states with dispersion

εk = −2t(cos kx + cos ky).

Analytic solution is

D(ω) =
1

2tπ2|x|K(1 − 1/x2)

where K is eliptic integral of the first kind and x = ω/(4t) and logarithmically diverges at

zero frequency.

Definition for the density of states is

D(ω) =

∫

d2k

(2π)2
δ(ω − εk) =

∫

ω=εk

1

(2π)2
dlk

|∇εk|
(9)

where the integral in this definition should be taken over the first Brillouin zone, i.e.,

kx ∈ [−π, π], ky ∈ [−π, π]

The length of the segment of constant energy is

dlk =
√

dk2
x + dk2

y = dkx

√

1 +

(

dky

dkx

)2

(10)
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and taking derivative along the line of constant energy

ω = −2t(cos kx + cos ky) → 0 = sin kxdkx + sin kydky (11)

we get

dlk = dkx

√

1 +

(

sin kx

sin ky

)2

(12)

|∇εk| = 2t
√

sin2 kx + sin2 ky (13)

Finally

D(ω) =
1

2t(2π)2

∫

ω=εk

dkx

| sin ky|
(14)

Let’s take new variable

x ≡ − ω

2t
= cos kx + cos ky
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yk  =0, cosk  =x−1x

yk  =   , cosk  =x+1xπ

(0,0)

(π,π)

As shown in Figure above, we need to distinguish two cases

• 0 < x < 2

D(x) =
4

2t(2π)2

∫ arccos(x−1)

0

dkx
√

1 − (x − cos kx)2

• −2 < x < 0

D(x) =
4

2t(2π)2

∫ π

arccos(x+1)

dkx
√

1 − (x − cos kx)2

Standart change of variables cos kx = u gives
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• 0 < x < 2

D(x) =
4

2t(2π)2

∫ 1

x−1

du√
1 − u2

√

1 − (x − u)2

• −2 < x < 0

D(x) =
4

2t(2π)2

∫ x+1

−1

du√
1 − u2

√

1 − (x − u)2

There are two poles in each integral: at lower and upper limit. How to remove poles

• Use non-equidistant mesh putting more points close to the divergency: tedious and not

really necessary since we have analytic expression

• Subtract divergent term (see below)

• Change variables in a way to remove divergencies (see below)
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If possible, it is much simpler to remove divergency by change of variables than by

subtracting divergency. In this case, it is indeed possible. First we will divide integral such

that each integral contains only one pole
∫ 1

x−1

du√
1 − u2

√

1 − (x − u)2
=

∫ x/2

x−1

· · · +
∫ 1

x/2

· · · (15)

In the first integral we change variable to v =
√

1 − (x − u)2 and in the second

v =
√

1 − u2. We see that both terms give equal contribution and the result is

2

∫

√
1−x2/4

0

dv
√

1 − v2

√

1 − (x −
√

1 − v2)2
(16)

Finally, density of states becomes

D(x) =
1

π2t

∫

√
1−x2/4

0

dv
√

1 − v2

√

1 − (|x| −
√

1 − v2)2
(17)

The integral looks more complicated, however, it does not contain any pole except at

ω = 0 where the integral does not converge and the results is infinite (Density of states

logarithmically diverges close to ω = 0).
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Figure 1: Change of variable - The function to be integrated for x = 0.01, x = 0.75,

x = 1.25 and x = 1.99.
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If the pole can not be removed by other means, we can always subtract the divergent part

and treat it analytically.

Again, we will first divide the integral into two parts such that each part contains only one

pole. By a change of variable v = x − u in the first part, we again recognize that both

parts give the same contribution to the density of states which becomes

D(x) =
1

π2t

∫ 1

x/2

du√
1 − u2

√

1 − (x − u)2
(18)

The pole is at u = 1 therefore we write u = 1 − ǫ to get
∫ 1−x/2

0

dǫ
√

2ǫ(1 − ǫ/2)2(x + ǫ)(1 − (x + ǫ)/2)
(19)

and the expansion for small ǫ gives
∫ 1−x/2

0

dǫ

2
√

ǫ(x + ǫ)(1 − x/2)
=

log(
√

1 − x/2 +
√

1 + x/2) − log
√

x
√

1 − x/2
(20)

We kept ǫ in the second term. This term is second order in ǫ, but the expression is not

exact to ǫ2. The exact ǫ2 expression contains spurious pole therefore we did not use it.
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Finally, density of states can be calculated by

D(x) =
1

π2t

∫ 1

x/2

du

[

1√
1 − u2

√

1 − (x − u)2
− 1

2
√

(1 − u)(1 − u + x)(1 − x/2)

]

+
1

π2t

log(
√

1 − x/2 +
√

1 + x/2) − log
√

x
√

1 − x/2
(21)

The important point is that the function in brackets being integrated is very smooth and not

divergent . It turns out that the slope of the integrating functions at x = 0 is still divergent

(one could choose better function wich is more complicated to integrate for any x), but its

integral is small compared to the divergent analytic term which logarithmically diverges just

like the exact answer.

Density of states is even function, therefore the absolute value of x should be used above

in general.
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Figure 2: Subtracting divergency - The function to be integrated for x = 0.01, x = 0.75,

x = 1.25 and x = 1.99.
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Kramers Kronig

If the function is analytic in the upper complex plane as well as in the lower complex plane

(as all response functions of physical system are) it must obey Kramars-Kronig relation

g′(y) = −P

∫

∞

−∞

dx

π

g′′(x)

y − x
. (22)

This is just the real-axis analog of more general Cauchy integral formula

g(z) =
1

2πi

∮

g(u)du

u − z
(23)

where path in the integral can be taken over the whole complex plane. Response functions

are not analytic on real axis therefore we need to exclude real axis in the integral (The only

function which is analytic everywhere is constant). If g(z) falls off in infinity, we have

g(z) =
1

2πi

∫

∞

−∞

[g(x + iδ) − g(x − iδ)]dx

x − z
(24)

which can be written as

g(z) = − 1

π

∫

∞

∞

g′′(x)dx

z − x
(25)
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Calculation of the Kramars-Kronig transformation is pretty straightforward ones the

subtraction of the divergent term is performed. Usually one implements Kramars-Kronig on

finite grid between limits a and b such that imaginary part of g is negligable at a or b. In this

case we have

g′(y) =

∫ b

a

dx

π

g′′(x) − g′′(y)

x − y
+

g′′(y)

π
Re[log(b − y) − log(a − y)] (26)

=

∫ b

a

dx

π

g′′(x) − g′′(y)

x − y
+

g′′(y)

π
log

(

b − y

y − a

)

(27)

The function being integrated is thus smooth everywhere. At point x = y it should be

calculated by estimating derivative
dg′′(y)

dy .
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Multidimensional integrals

Not easy, task. Most important: Can one reduce dimensionality by analytic means?

Two methods are available for multidimensional integrals

• Use of one dimensional integration routines (best if one figures out good enough

optimized non-equidistant mesh)

• Monte Carlo integration (possible only if high accuracy is not required and function is

not strongly peaked)

When can one use one-dimensional routines for multidimensional integrals

• The shape of the boundary of the region of integration must be simple.

• Function can be strongly peaked, but one needs to know where peaks are.

• Time needed is simply given by NM where N is number of points for one dimensional

integral and M is dimension. For example, 3-dimensional integral with 100 point in

each dimension needs 106 function evaluations.
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Homeworks

1 Write the computer program which will compute the density of states D(ω) discussed above. Compute it by the change of

variable and by subtracting the divergent term. Which technique is simpler and which is more precise? Which is faster?

2 Compute the Kramers-Kronig relation for this Density of states

g′(x) =

∫

dω
D(ω)

x − ω
(28)

3 (optional): Code Hilbert transform of this density of states. Hilbert transform is defined by

w(z) =

∫

dωD(ω)

z − ω
(29)

for any complex z in the upper (or lower) half of the complex plane.

Plot hilbert transform for w(x + 0.01i), w(x + 0.2i) and w(x + 0.5i).

4 (optional) You could improve performance of the Hilbert transform by calculating D(ω) on certain optimized

(non-equidistant) mesh which is more dense at the divergencies or cusps. You can than implement Hilbert transform using

the pre-calculated D. It is usually enough to calculate Hilbert transform up to 0.1% accuracy and therefore 400 points

should be enough to resolve D(ω).
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