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Monte Carlo, importance sampling

through Markov chain and

simulated annealing

Let us introduce the concept of importance sampling method by application to classical

many-particle system (like Ising model or classical gas).

The basic idea of Monte Carlo Simulation:

The simulation is performed by random walk through very large configuration space. The

probability to make a move has to be such that the system gets to thermal equilibrium (and

remains in thermal equilibrium) at certain temperature T (is usually a parameter) after a lot

of Monte Carlo steps.

The basic idea of simulated annealing:

Slowly decreasing the temperature of the system leads to the ground state of the system.

When using this type of cooling down by Monte Carlo, one can find a global minimum of a

general minimization problem. This is called simulated annealing.
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Monte Carlo importance sampling and Markov chain

If a configuration in phase space is denoted by X , the probability for configuration

according to Boltzman is

ρ(X) ∝ e−βE(X) β =
1

T
(1)

[In QMC the probability is usually choosen using the partition function, i.e., ρ(X) ∝ Z(X)

]

How to sample over the whole phase space for a general problem? How to generate

configurations?

• Brute force: generate a truly random configuration X and accept it with probability

e−βE(X) where all E > 0. SuccessiveX are statistically independent.

VERY INEFFICIENT

• Markov chain: Successive configurationsXi, Xi+1 are NOT statistically independent

but are distributed according to the choosen disribution (such as Boltzman distribution).

What is the difference between Markov chain and uncorrelated sequence?
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• Truly random or uncorrelated sequence of configurations satisfies the identity

P (X1, X2, · · · , PXN
) = P1(X1)P1(X2) · · ·P1(XN )

• Markov chain satisfies the equation

P (X1, X2, · · · , PXN
) = P1(X1)T (X1 → X2)T (X2 → X3) · · ·T (XN−1 → XN )

where the transition probabilities T (X → X ′) are normalized

∑

X′

T (X → X ′) = 1

We want to generate Markov chain where distribution of states is proportional to the

choosen distribution (e−βE(X)) and the distribution of states is independent of the position

within the chain and independent of the initial configuration.

1) Connectedness

The necessary conditions for generating such Markov chain is that every configuration in

phase space should be accesible from any other configuration within finite number of steps

(connectedness or irreducibility) - (Be careful to check this condition when choosing Monte

Carlo step!)
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2) Detail balance

We need to find transition probability T (X → X ′) which leads to a given stationary

distribution ρ(X) (in this case ρ(X) ∝ e−βE(X)).

The probability for X decreases, if system goes from X to any other X ′:

∆ρ(X) = −
∑

X′ ρ(X)T (X → X ′) and increases if X configuration is visited from

any other state X ′: ∆ρ(X) =
∑

X′ ρ(X ′)T (X ′ → X). The step (time) difference of

the probabilityX is therefore

ρ(X, t+ 1)− ρ(X, t) = −
∑

X′

ρ(X)T (X → X ′) +
∑

X′

ρ(X ′)T (X ′ → X) (2)

We look for stationary solution, i.e., ρ(X, t+ 1)− ρ(X, t) = 0 and therefore

∑

X′

ρ(X)T (X → X ′) =
∑

X′

ρ(X ′)T (X ′ → X) (3)

General solution of this equation is not accesible, but a particular solution is obvious

ρ(X)T (X → X ′) = ρ(X ′)T (X ′ → X) (4)

This solution is called DETAIL BALANCE solution.
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To construct algorithm, we devide transition prob. T (X → X ′) = ωX→X′AX→X′ :

• trial step probability ωX→X′ .

Many times it is symmetric, i.e., ωX→X′ = ωX′→X . (for example spin flip in ising:

ωXX′ is 1/L2 if X andX ′ differ for a single spin flip and zero otherwise ).

• acceptance probability AX→X′

(for example accepting of rejecting new configuration with probability proportional to

min(1, exp(−β(E(X ′)− E(X))))).

Detail balance condition becomes

AX→X′

AX′→X
=
ωX′→X ρ(X ′)

ωX→X′ ρ(X)

Metropolis chooses

AX→X′ = 1 if ωX′→Xρ(X
′) > ωX→X′ρ(X)

AX→X′ = ωX′→X ρ(X′)
ωX→X′ ρ(X) if ωX′→Xρ(X

′) < ωX→X′ ρ(X).
(5)

Obviously, this acceptance probability satisfies detail balance condition and therefore leads
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to desired Markov chain with stationary probability for any configurationX ∝ ρ(X) for

long times.

To summarize Metropolis algorithm

• T (X → X ′) = ωX→X′AX→X′

•

∑

X′ ωX→X′ = 1 and ωX→X′ > 0 for all X,X ′ after finite number of steps

• AX→X′ = min(1, ρ(X
′)ωX′→X

ρ(X)ωX→X′
)

How to accept a step with probability AXX′ < 1? One can generate a random number

r ∈ [0, 1] and accept the step if r < AXX′ .

Keep in mind:

• Configurations that are generated by Markov chain are correlated. The theory

guarantees that we arrive at invariant distribution ρ after a long time.

• Two configurations are statistically independent only if they are far apart in the Markov

chain. This distance is called correlation time, and is usually very long.

• (Be careful: To meassure distance in Markov chain, every step counts, not only

successful.)
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A less trivial example of Markovian chain is given by so-called continuous time Monte Carlo

methods, which are very successful in simulating quantum problems. In this case, we

typically sample Markovian chain, with the weight proportional to the partition function,

because physical observables are given by

〈A〉 = 1

Z

∫

D[ψ†ψ]e−S[ψ
†ψ]A[ψ†ψ] where Z =

∫

D[ψ†ψ]e−S[ψ
†ψ]

(6)

Suppose that the partition function can be expanded in the following series

Z =
∞
∑

n=0

∫

dτ1

∫

dτ2 · · ·
∫

dτnw(τ1, τ2, · · · , τn) (7)

and lets suppose that all contributions are positive (no fermionic minus sign problem).

This is typically obtained by Taylor-like series of the partition function

Z =

∫

D[ψ†ψ]e
−
∫

β

0
dτψ†(τ)( ∂

∂τ
+H0+V (τ))ψ(τ)

(8)

in povers of V (τ). This will generate an infinite series of time integrals.

Kristjan Haule, 2022 –7–



KH Computational Physics- 2022 Metropolis

Suppose that we are generating such time evolution in the interval [0, β] by adding and

removing point in this interval. The n-th order integral will have n-points (called kinks) in the

time evolution. The MC move will either add another kink, or, it will remove a kink from the

current configuration. Here is a simple sketch:

If we are adding the new time τnew , and selecting it randomly in the interval [0, β], the

probability to select the given time is τnew is

ωX→X′ =
dτnew
β

(9)

This is the trial step probability for adding a kink. To keep the detail balance, we will need to

equally likely removing a kink from the time evolution. We will randomly select one of the

existing kinks, and removing it. In this case we have the trial step probability

ωX′→X =
1

n+ 1
(10)
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On the other hand, the probability for configurationsX and X ′ is

δρ(X) = dτ1dτ2 · · · dτn w(τ1, τ2, · · · , τn) (11)

δρ(X ′) = dτ1dτ2 · · · dτndτnew w(τ1, τ2, · · · , τn; τnew) (12)

So that the acceptance step probability is well defined and is finite:

AX→X′

AX′→X
=
ωX′→X δρ(X ′)

ωX→X′ δρ(X)
(13)

=
1

n+ 1

β

dτnew

dτ1dτ2 · · · dτndτnew w(τ1, τ2, · · · , τn; τnew)
dτ1dτ2 · · · dτn w(τ1, τ2, · · · , τn)

(14)

=
β

n+ 1

w(τ1, τ2, · · · , τn; τnew)
w(τ1, τ2, · · · , τn)

(15)
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Now back to classical Boltzmanian probability distribution:

Most of the time we are simulating configurations which correspond to the partition function,

so that the probability to find a given state X in the Markov’s chain is equal to

ρ(X) = e−E(X)
∑

X
e−E(X)

= ∆Z(X)
Z .

The average of any quantity is then calculated by

A ≡
∑

X

ρ(X)A(X) → 1

n− n0

n
∑

i>n0

Ai

where n0 steps are used to ”warm-up”. This is because the configurations in the Markov’s

chain are distributed according to ρ(X).

We can also try compute the following quantity

∑

X

ρ(X)(A(X)−A)2 →? 1

n− n0

n
∑

i>n0

(Ai −A)2.

This is A WRONG ESTIMATION OF THE ERROR OF MC. The error is much bigger than

this estimation, because configurationsX are correlated! Imagine the limit of large

correlations when almost all values Ai are the same (very slowly changing configurations).
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We would estimate that standard deviation is zero regardless of the actual error!

To compute standard deviation, we need to group meassurements within the correlation

time into bins and than estimate the standard deviation of the bins:

Bl =
1

N0

i<Nl+N0
∑

i=Nl

Ai (16)

σ2 =
1

M

M−1
∑

j=0

(Bj −A)2 (17)

where we took into account thatA = B. The correlation time (here denoted by N0) is not

very easy to estimate. Maybe the best algorithm is to compute σ2 for few different N0 and

as long as σ2 is increasing with N0, the correlation time is still larger than N0. When σ2

stops changing with increasingN0, we reached correlation time and σ2 is a good

estimation of standard deviation.
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Example: Ising Model

Below we sketch algorithm for the two dimensional Ising model

H = −1

2

∑

ij

JijSiSj . (18)

We will take Jij = 1 for the nearest neighbors and 0 otherwise. Si can take the values

±1.

On an L× L lattice, we can choose

ωXX′ = 1/L2

if X and X ′ differ by one spin flip, and ωXX′ = 0 otherwise. This can be realized by

selecting a spin at random and try to flip it.

The energy diference ∆E = E(X ′)− E(X) in this case is cheap to calculate because

it depends only on the nearest neighbour bonds. If ∆E < 0 the trial state is accepted and

if ∆E > 0, the trial step is accepted with probability exp(−β∆E).
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Keep in mind

• One can keep track of total energy and total magnetization at every step. The total

energy and magnetization needs to be computed from the scratch only at the

beginning. After that they can be updated (add difference due to spin flip).

• the quantity exp(−β∆E) takes only 5 different values at fixed temperature. It is

advisable to store those five numbers and not recompute them at every step.

• Simulation can be started with random configuration corresponding to infinite

temperature. The temperature can be slowly decreased through transition which is

around βJ ≈ 0.44.
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Algorithm

• Choose temperature T and precompute the exponents

[exp(−8J/T ), exp(−4J/T ), 1, exp(4J/T ), exp(8J/T )].

• Generate a random configurationX0 (this is equivalent to infinite temperature).

• Compute the energy and magnetization of the configurationX0.

• Iterate the following steps many times

– Select randomly a spin and compute the Weiss-field felt by that spin, i.e.,

Wi =
∑

j neighbor i JijSj . The energy cost to flip the spin is ∆E = 2SiWi.

Use the precomputed exponents to evaluate acceptance probability

P = min(1, exp(−∆E/T )).

– Accept the trial step with probability P . If accepted, update spin lattice

configuration, update the current energy (E = E +∆E), and the current

magnetizationM =M − 2Si.

– Ones the Markow chain equilibrates, meassure the total energy and magnetization

(also E2, and M2) every few Monte Carlo steps. Be carefull: Do not meassure

only the accepted steps. Every step counts. Meassure outside the acceptance loop.
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• Print the following quantities:

– 〈E〉, 〈M〉
– cV = (〈E2〉 − 〈E〉2)/T 2

– χ = (〈M2〉 − 〈M〉2)/T

The relation for specific heat can be derived from the following identity

Cv =
∂〈E〉
∂T

=
∂

∂T

(

Tr(e−H/TE)

Tr(e−H/T )

)

(19)

and similar equation exists for χ.
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Wang-Landau Method

The algorithm is very useful for studing the phase transition phenomena because it does

not suffer from the critical slowing down and gives direct access to thermodynamic potential

and its derivatives
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Consider the 4-site Ising model.

H=J S Si j

−4J 0 +4J

12

2 2

+4J

+4J

0

0

0

−4J x2

x4

x4

x4

x1

x1

g(E)

Many energy levels are highly degenerate.

In case of periodic boundary conditions, the allowed energy levels of the ising model are:

−2JN , −2J(N − 4), −2J(N − 6),−2J(N − 8) ... 2JN . The number of energy

levels is of the order of N while the number of all possible states is 2N . Therefore many

states have to be heavily degenerate. In Markov-chain simulation at certain low

temperature T , most of states visited have the same energy close to 〈E〉 ( the probability
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for a state is e−E/T ).

The classical MC simulation generates canonical distribution at a given temperature

P (E) ∝ g(E)e−E/T . The idea of Wang-Landau is to estimate the many-body density of

states g(E) directly. The temperature is not required for the simulation and by analyzing

g(E) one can study thermodynamics at any temperature.

If the density of state g(E) is known, the free energy is simply given by

F (T ) = −kBT log(Z) = −kBT log
∑

E

g(E)e−E/T (20)

In the Wang-Landau algorithm the random walk in energy space is performed and the

probability to visit a state with energyE is taken to be P ∝ 1
g(E) . The resulting histogram

H(E) ∝ g(E)P (E) ∝ const is therefore flat in the simulation.

In our example above, a simple random walk would visit a state with E = 0 six-times more

often than the other two states since there are six-times more states at E = 0. If we

assign probability for the state at E = −4J to be proportional to 1/2, at E = 0 to 1/12

and at E = 4J to be 1/2, we will visit all three states on average the same number of

times. Hence the histogram of visits is flat.
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Let us sketch of the algorithm which generates the density of states g(E).

The transition probability is taken to be

P (E1 → E2) = min

[

g(E1)

g(E2)
, 1

]

. (21)

We always accept moves with smaller density of states but we often reject moves that

would bring us to the state with high density of states.

• Start with g(E) = 1 for all energies of the model.

• Try to flip a random spin and accept the move according to probability (21).

• Every time we accept a move, the density of states for the current energy is updated by

multiplying the existing value g(E) by a modification factor f > 1, i.e.,

g(E) → g(E)f .

This modification factor serves like a temperature in the simulated annealing algorithm.

At the beginning it is taken to be relatively large f ∼ e1 = 2.71828 and later it is

reduced to unity. Because of this large factor, the density of states will grow very fast for

highly degenerate states and we will quickly visit all possible energies. However, the

density of states obtained by large f is not very accurate. The error is equal to log(f).
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• The simulation at certain modification factor f is running for so long that the histogram

becomes flat, i.e., each energy level was visited equal number of times. Here equal

means that the deviation is within certain bound, like 80-90%.

• At that point, the histogram is reset to zero H(E) = 0 and a new random walk is

started with finer modification factor (like f1 =
√
f0).

• The simulation is again running so long that the histogram becomes flat. After that, the

histogram is again reset and modification factor is reduced.

• When the modification factor f becomes sufficiently close to unity, the density of states

does not change anymore. If we are able to obtain a flat histogram using

converged g(E) in Eq. (21), the density of states g(E) is obviously the true

density of states of the model.
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Simulated annealing

Is a technique which uses Matropolis to find a global minimum of a function of many

variables. It is typically used for large scale problems, especially ones where a desired

global minimum is hidden among many poorer local minima.

The class of problems known as NP-complete problems, whose computation time for an

exact solution increases with N as exp(const.N), were basically unsolvable until recently.

Only in 1983, the method was invented ( Kirkpatrick, S., Gelatt, C.D., and Vecchi, M.P.

1983, Science, vol. 220, 671-680 (1083).) which effectively solved most of these problems

for practical purposes.

Simulated annealing does not ”solve” them exactly, but in most cases we just need

reasonable good solution even if its not the one with exacly the lowest total energy.

The archtype example of NP-complete problems, the traveling salesman problem, is easy

to solve with this method.

Other very important application is in designing complex integrated circuits: The

arrangement of several hundred thousand circuit elements on a tiny silicon substrate is

optimized so as to minimize interference among their connecting wires.
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The simulated annealing uses Metropolis algorithm with slowly decreasing temperature in

order that system relaxes into its ”ground state”.

The steps consis of

• Pick initial configurationX and an initial temperature T0. T0 should be much higher

than the changes in function f to be minimized when typical Monte Carlo step is taken.

• Loop through decreasing temperature Ti

– Equilibrate at Ti using Metropolis with selected, allowed elementary changes in the

system. The system is equilibrated when the rate of change of f averaged over

some number of Monte Carlo steps is small.

– Measure the termal average of f . If f does not decrease at this temperature Ti
compared to previous temperature Ti−1, exit the loop.

– Decrease Ti to Ti+1. For example, reduces the effective temperature by 10%.

The major difficulty (art) in implementation of the algorithm is that there is no obvious

analogy for the temperature T with respect to a free parameter in the combinatorial

problem. Furthermore, avoidance of entrainment in local minima (quenching) is dependent

on the ”annealing schedule”, the choice of initial temperature, how many iterations are
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performed at each temperature, and how much the temperature is decremented at each

step as cooling proceeds.
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Example: The Traveling Salesman problem

The seller visits N cities (i = 0...N − 1) with given positions Ri, returning finally to his or

her city of origin. Each city is to be visited only once, and the route is to be made as short

as possible. This problem belongs to a class known as NP-complete problems, whose

computation time for an exact solution increases with N exponentially.

The traveling salesman problem also belongs to a class of minimization problems for which

the objective function E has many local minima. In practical cases, it is often enough to be

able to choose from these a minimum which, even if not absolute, cannot be significantly

improved upon.

The annealing method manages to achieve this, while limiting its calculations to scale as a

small power of N .
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As a problem in simulated annealing, the traveling salesman problem is handled as follows:

1. Configuration: The cities are numbered i = 0...N − 1 and each has coordinate Ri. A

configuration is a permutation of the number 0...N − 1, interpreted as the order in

which the cities are visited.

2. Rearrangements: An efficient set of moves are:

(a) A section of path is removed and then replaced with the same cities running in the

opposite order; or

(b) a section of path is removed and then replaced in between two cities on another,

randomly chosen, part of the path.

3. Objective Function: In the simplest form of the problem,E is taken just as the total

length of journey

The above two mentioned moves are hardest to implement. The following plot explains

them in an example
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Figure 1: top: reverse move, bottom: transpose move

For details of implementation, check the example source code.
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Figure 2: Example of the Traveling Salesman problem with 100 and 1000 cities redistributed

randomly on a square between ([0, 1], [0, 1]).
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Homework

• Implement Traveling Salesman problem.

• Test traveling salesman problem and plot distance d versusN , whereN is number of cities. What is the optimal curve

distance?
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