Roundoff error

Every data in a computer is a collection of bits (zeros and ones).

byte=8 bits

KiB=KiloByte = 2^{10} byte=1024byte

MiB=MegaByte = 2^{20} byte \approx 1e6 bytes

GiB=GigaByte = 2^{30} byte \approx 1e9 byte

TiB=TeraByte = 2^{40} byte \approx 1e12 byte

PiB=PetaByte = 2^{50} byte \approx 1e15 byte

EiB=ExaByte = 2^{60} byte \approx 1e18 byte

ZiB=ZettaByte = 2^{70} byte \approx 1e21 byte

YiB = YottaByte = 2^{80} byte \approx 1e24 byte

Moore’s law: every 18 months doubles, in 15 years increase for $2^{10} \approx 1e3$.

Most computers are nowadays 64-bit: a pointer takes 64 bit.

With 32-bit system one can address $2^{32} \approx 4 \times 10^9$ different locations in memory, hence
≈ 2 GiB RAM requires 64-bit processor+operating system.

With 64 bit system one can address $2^{64} \approx 1 \times 10^{19}$ locations, hence several ExaBytes.
There are two classes of types used by computer:

a) fixed point (integer and long)

b) floating point (float, double, complex, ...)

Arithmetics with integer is exact (except when overflow occurs)

In most of computers, integers are 32bit=4byte. Since integer needs also sign (takes one bit) integer has the range from \(-2^{31}\) to \(2^{31} - 1\).

Larger types are long's, and long long's. The latter are normally 64 bit, while the former are usually 32 bit.

The example computer program shows you the limits of some of the most often used types.

```cpp
int main()
{
    using namespace std;
    cout << "type " << "# bits minimum maximum value" << endl;
    cout << "char: " << (numeric_limits<char>::digits+1) << "\"" << static_cast<int>(numeric_limits<char>::min()) << endl;
    cout << "\"\" << static_cast<int>(numeric_limits<char>::max()) << endl;
    cout << "int: " << (numeric_limits<int>::digits+1) << "\"" << numeric_limits<int>::min() << endl;
    cout << "\"\" << numeric_limits<int>::max() << endl;
    cout << "long: " << (numeric_limits<long>::digits+1) << "\"" << numeric_limits<long>::min() << endl;
    cout << "\"\" << numeric_limits<long>::max() << endl;
    cout << "long long: " << (numeric_limits<long long>::digits+1) << "\"" << numeric_limits<long long>::min() << endl;
    cout << "\"\" << numeric_limits<long long>::max() << endl;
    cout << "double: " << (numeric_limits<double>::digits+1) << "\"" << numeric_limits<double>::min() << endl;
    cout << "\"\" << numeric_limits<double>::max() << endl;
    cout << "\"\" << numeric_limits<double>::infinity() << "\"" << numeric_limits<double>::signaling_NaN() << endl;
    cout << endl;
returns is
```
<table>
<thead>
<tr>
<th>type</th>
<th># bits</th>
<th>minimum</th>
<th>maximum</th>
<th>value</th>
</tr>
</thead>
<tbody>
<tr>
<td>char</td>
<td>8</td>
<td>-128</td>
<td>127</td>
<td></td>
</tr>
<tr>
<td>int</td>
<td>32</td>
<td>-2147483648</td>
<td>2147483647</td>
<td></td>
</tr>
<tr>
<td>long</td>
<td>32</td>
<td>-2147483648</td>
<td>2147483647</td>
<td></td>
</tr>
<tr>
<td>long long</td>
<td>64</td>
<td>-9223372036854775808</td>
<td>9223372036854775807</td>
<td></td>
</tr>
<tr>
<td>double</td>
<td>32</td>
<td>2.22507e-308</td>
<td>1.79769e+308</td>
<td>2.22045e-16</td>
</tr>
</tbody>
</table>
Arithmetics with floating point numbers is not exact causing many difficulties.

In modern computers, the floating point is presented as $Sign \times Mantisa \times Exponent$. The largest and the smallest floating point number depends on the type. Most often we will use double, which needs 8bytes=64bits and can store numbers between $2.22507e-308$ to $1.79769e+308$. [roughly: 9-bits exponent, 54-bits mantisa, 1-bit sign]

The overflow error occurs if we want to store $x > 1.79769 \times 10^{308}$ and underflow when $x < 2.22507 \times 10^{-308}$. This is usually not so crucial, although it occurs if one is not careful (1/0!!).

The roundoff error ϵ occurs when: $1+\epsilon \equiv 1$.

For double, which takes 8 bytes, it occurs around (only!) 10^{-16}. (Check the simple example program!)

The roundoff error makes bad algorithms unstable
Example: Calculation of spherical Bessel function $j(x)$ with upward and downward recursion.

Spherical bessel functions are solutions of $V = 0$ radial Schroedinger equation

$$\left[-\frac{1}{2} \frac{d^2}{dr^2} + \frac{l(l+1)}{2r^2}\right] [rj_l(r)] = E[rj_l(r)]$$

(1)

and satisfy the following recursion relation

$$j_{l+1}(x) = \frac{2l+1}{x} j_l(x) - j_{l-1}(x).$$

(2)

and initial condition:

$$j_0(x) = \frac{\sin(x)}{x}, \quad j_1(x) = \frac{\sin(x)}{x^2} - \frac{\cos(x)}{x}$$

(3)

A three term linear recursion relation → two solutions $j_l(x)$ and $n_l(x)$ are possible.

If $l \gg x$, $n_l(x)$ is larger than $j_l(x)$. For large l and small x the upward recursion for $j_l(x)$ does not work (becomes $n_l(x)$ after a few steps).

The idea is to use Miller’s algorithm: Use recursion in the opposite direction to get $j_l(x)$ at large l and small x. Here is the code for the upward recursion by jupyter notebook:
Upward recursion

We will evaluate Bessel upward recursion using the formula

\[\hat{j}_{i+1}(x) = \frac{2i + 1}{x} \hat{j}_i - \hat{j}_{i-1} \]

(1)

```python
In [2]:

from scipy import *
from numpy import *

def bessel_upward(l, x):
    "returns array of j l from i=0 to i=1, including l"
    res = zeros(l+1)
    if abs(x)<1e-30:
        res[0]=1.
        return res
j0 = sin(x)/x
res[0]=j0
if l==0: return res
j1 = j0/x - cos(x)/x
res[1] = j1

for i in range(1, l):
    j2 = (2*i+1)/x*j1 - j0
    res[i+1]=j2
    j0, j1 = j1, j2

return res
```

```python
In [3]:

from scipy import special

l=10
x=0.1

dat0 = bessel_upward(l,x)
dat1 = special.spherical_jn(range(l+1),x)

diff = dat0-dat1
print(dat0)
print(dat1)
print( 'difference=', diff)
```

Kristjan Haule, 2021
Downward recursion starts from sufficiently higher l_{start} than desired l. Good choice is $l_{\text{start}} = l + 3\sqrt{l}$. Starting values $j_{l_{\text{start}}}$ and $j_{l_{\text{start}}-1}$ are not important. Good guess is 0 and 1, respectively. We always need to continue down to $l = 0$ and using $j_0(x)$ normalize the result.

Here is the code for downward recursion in Python:

```python
2  downward recursion

Now we will use recursion:

$$ j_{l-1} = \frac{(2l + 1)}{x}j_l - j_{l+1} \quad (2) $$

[11]: def bessel_downward(l,x):
    "downward recursion"
    if abs(x)<1e-20:
        res = zeros(l+1)
        res[0]=1
        return res
    lstart = l + int(sqrt(10*l))
    j2 = 0.
    j1 = 1.
    res = []
    for i in range(lstart,0,-1):
        j0 = (2*i+1)/x * j1 - j2
        if i-1<=l : res.append(j0)
        j2 = j1
        j1 = j0
    res.reverse()
    true_j0 = sin(x)/x
    res = array(res) * true_j0/res[0]
    return res
```

Kristjan Haule, 2021
Numerical error for $x = 0.1$:

<table>
<thead>
<tr>
<th># upward</th>
<th>downward</th>
<th>exact</th>
<th>diff-up</th>
<th>diff-dn</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.998334</td>
<td>0.998334</td>
<td>1.11022e-16</td>
<td>1.11022e-16</td>
</tr>
<tr>
<td>1</td>
<td>0.0333</td>
<td>0.0333</td>
<td>1.38778e-16</td>
<td>6.93889e-18</td>
</tr>
<tr>
<td>2</td>
<td>0.000666191</td>
<td>0.000666191</td>
<td>4.28824e-15</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>9.51852e-06</td>
<td>9.51852e-06</td>
<td>2.14221e-13</td>
<td>1.69407e-21</td>
</tr>
<tr>
<td>4</td>
<td>1.05772e-07</td>
<td>1.05772e-07</td>
<td>1.49947e-11</td>
<td>2.64698e-23</td>
</tr>
<tr>
<td>5</td>
<td>2.31094e-09</td>
<td>9.61631e-10</td>
<td>1.34931e-09</td>
<td>2.06795e-25</td>
</tr>
<tr>
<td>6</td>
<td>1.48416e-07</td>
<td>7.39754e-12</td>
<td>1.48409e-07</td>
<td>1.61559e-27</td>
</tr>
<tr>
<td>7</td>
<td>1.92918e-05</td>
<td>4.93189e-14</td>
<td>1.92918e-05</td>
<td>1.26218e-29</td>
</tr>
<tr>
<td>8</td>
<td>0.00289362</td>
<td>2.9012e-16</td>
<td>0.00289362</td>
<td>4.93038e-32</td>
</tr>
<tr>
<td>9</td>
<td>0.491896</td>
<td>1.52699e-18</td>
<td>0.491896</td>
<td>0</td>
</tr>
</tbody>
</table>
Numerical error for upward recursion for various l as a function of x.
Numerical error for downward recursion for various l as a function of
Combination of upward and downward recursion:
1 Second Homework

- Write a python script to compute spherical bessel functions with up and down recursion. Plot the error of your algorithm when compared to scipy version of $j_l(x)$.

- Optional: Use f2py or pybind11 to speed up the algorithm.

- We want to compute the series of integrals, defined by

\[
K_n(z, \alpha, a, b) = \int_{a}^{b} \frac{x^n}{z + \alpha x} \, dx
\]

when $n = 0, 1, \ldots, n_{max} = 10$.

a and b are numbers between 0 and 1. For simplicity you can choose $a = 0$ and $b = 1$.

- Derive the recursion relation between K_{n+1} and K_n.

- Then starting from K_0 you can compute all K_n up to n_{max} using the recursion. This works quite well for $|\alpha/z| \geq 1$.
Choosing z and α so that $|\alpha/z| \ll 1$ (for example $\alpha/z = 10^{-4}$) verify that upward recursion does not lead to accurate results.

Implement downward recursion for $\alpha/z < 1/2$. Make sure that you start with very accurate value for $K_{n_{max}}$. You can derive a power expansion of $K_{n_{max}}$ in powers of $(\alpha/z)^k$, and evaluate as many terms as needed to achieve desired accuracy (for example 10^{-12}).