
KH Computational Physics- 2021 Introduction

Roundoff error

Every data in a computer is a collection of bits (zeros and ones).

byte=8 bits

KiB=KiloByte = 210 byte=1024byte

MiB=MegaByte = 220 byte ≈ 1e6 bytes

GiB=GigaByte = 230 byte ≈ 1e9 byte

TiB=TeraByte = 240 byte ≈ 1e12 byte

PiB=PetaByte = 250 byte ≈ 1e15 byte

EiB=ExaByte = 260 byte ≈ 1e18 byte

ZiB=ZettaByte = 270 byte ≈ 1e21 byte

YiB = YottaByte = 280 byte ≈ 1e24 byte

Moore’s law: every 18 months doubles, in 15 years increase for 210 ≈ 1e3.
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Most computers are nowadays 64bit: a pointer takes 64 bit.

With 32bit system one can address 232 ≈ 4e9 different locations in memory, hence

≈ 2GiB RAM requires 64-bit processor+operating system.

With 64 bit system one can address 264 ≈ 1e19 locations, hence several ExaBytes.
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There are two classes of types used by computer:

a) fixed point (integer and long)

b) floating point (float, double,complex,...)

Arithmetics with integer is exact ( except when overflow occurs)

In most of computers, integers are 32bit=4byte. Since integer needs also sign (takes one

bit) integer has the range from −231 to 231 − 1.

Larger types are long’s, and long long’s. The latter are normally 64 bit, while the former are

usually 32 bit.

The example computer program shows you the limits of some of the most often used types.

output is
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Arithmetics with floating point numbers is not exact causing many difficulties.

In modern computers, the floating point is presented as Sign ∗Mantisa ∗Exponent.

The largest and the smallest floating point number depends on the type. Most often we will

use double, which needs 8bytes=64bits and can store numbers between 2.22507e-308 to

1.79769e+308. [roughly: 9-bits exponent, 54-bits mantisa, 1-bit sign]

The overflow error occurs if we want to store x > 1.79769 ∗ 10308 and underflow when

x < 2.22507 ∗ 10−308. This is usually not so crucial, although it occurs if one is not

careful (1/0!!).

The roundoff error ǫ occurs when : 1+ǫ == 1.

For double, which takes 8 bytes, it occurs around (only!) 10−16. (Check the simple

example program!)

The roundoff error makes bad algorithms unstable
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Example: Calculation of spherical Bessel function j(x) with upward and downward

recursion.

Spherical bessel functions are solutions of V = 0 radial Schroedinger equation
[

−1

2

d2

dr2
+

l(l + 1)

2r2

]

[rjl(r)] = E[rjl(r)] (1)

and satisfy the following recursion relation

jl+1(x) =
2l + 1

x
jl(x)− jl−1(x). (2)

and initial condition:

j0(x) =
sin(x)

x
j1(x) =

sin(x)

x2
− cos(x)

x
(3)

A three term linear recursion relation → two solutions jl(x) and nl(x) are possible.

If l ≫ x, nl(x) is larger than jl(x). For large l and small x the upward recursion for

jl(x) does not work (becomes nl(x) after a few steps).

The idea is to use Miller’s algorithm: Use recursion in the opposite direction to get jl(x) at

large l and small x. Here is the code for the upward recursion by jupyter notebook:

Kristjan Haule, 2021 –6–



KH Computational Physics- 2021 Introduction

Kristjan Haule, 2021 –7–



KH Computational Physics- 2021 Introduction

Downward recursion starts from sufficiently higher lstart than desired l. Good choice is

lstart = l + 3
√
l. Starting values jlstart

and jlstart−1 are not important. Good guess is

0 and 1, respectively. We always need to continue down to l = 0 and using j0(x)

normalize the result.

Here is the code for downward recursion in Python:
k /QrMr�`/ `2+m`bBQM

LQr r2 rBHH mb2 `2+m`bBQM,

jl−1 = (2l + 1)/xjl − jl+1 UkV

(RR), /27 #2bb2Hn/QrMr�`/UH-tV,

]/QrMr�`/ `2+m`bBQM]

B7 �#bUtVIR2@ky,

`2b 4 x2`QbUHYRV

`2b(y)4R

`2im`M `2b

Hbi�`i 4 H Y BMiUb[`iURy HVV

Dk 4 yX

DR 4 RX

`2b 4 ()

7Q` B BM `�M;2UHbi�`i-y-@RV,

Dy 4 Uk BYRVft  DR @ Dk

B7 B@RI4H , `2bX�TT2M/UDyV

Dk 4 DR

DR 4 Dy

`2bX`2p2`b2UV

i`m2nDy 4 bBMUtVft

`2b 4 �``�vU`2bV  i`m2nDyf`2b(y)

`2im`M `2b
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Numerical error for x = 0.1:
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Numerical error for upward recursion for various l as a function of x.
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Numerical error for downward recursion for various l as a function of
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Combination of upward and downward recursion:
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1 Second Homework

• Write a python script to compute spherical bessel functions with up and down

recursion. Plot the error of your algorithm when compared to scipy version of

jl(x).

• Optional: Use f2py or pybind11 to speed up the algorithm.

• We want to compute the series of integrals, defined by

Kn(z, α, a, b) =

∫ b

a

dx
xn

z + αx
(4)

when n = 0, 1, ....nmax = 10.

a and b are numbers between 0 and 1. For simplicity you can choose a = 0
and b = 1.

– Derive the recursion relation between Kn+1 and Kn.

– Then starting from K0 you can compute all Kn up to nmax using the

recursion. This works quite well for |α/z| >= 1.
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– Choosing z and α so that |α/z| ≪ 1 ( for example α/z = 10−4 ) verify

that upward recursion does not lead to accurate results.

– Implement downword recursion for α/z < 1/2. Make sure that you start

with very accurate value for Knmax
. You can derive a power expansion of

Knmax
in powers of (α/z)k , and evaluate as many terms as needed to

achieve desired accuracy (for example 10−12 ).
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