Solution to Problem Set 4

\[K.E. = \frac{1}{2} m \left[l^2 \dot{\theta}_1^2 + l^2 \dot{\theta}_2^2 \right] = \frac{m l^2}{2} \left[\dot{\theta}_1^2 + 2 \dot{\theta}_1 \dot{\theta}_2 + \dot{\theta}_2^2 \right] \]

\[T = m l^2 \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix} \]

Total P. E. = \[\frac{1}{2} \ k l^2 \left[(\dot{\theta}_1 - \dot{\theta}_2)^2 - \frac{1}{2} m g l (2 \dot{\theta}_1^2 + \dot{\theta}_2^2) \right] + \text{const} \]

\[V = k l^2 \begin{bmatrix} 2(1-\beta) & -1 \\ -1 & 1-\beta \end{bmatrix} \]

\[V = m \omega_e^2 l^2 \begin{bmatrix} 2(1-\beta) & -1 \\ -1 & 1-\beta \end{bmatrix} \]

a) If \(\omega \) is a resonant frequency then

\[|V - \omega^2 T| = 0 \]

or

\[\left| \begin{pmatrix} 2(1-\beta) & -1 \\ -1 & 1-\beta \end{pmatrix} - \frac{\omega^2}{\omega_e^2} \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix} \right| = 0 \]

Let us call \(\frac{\omega^2}{\omega_e^2} = \kappa \).
\[
\begin{vmatrix}
2(1-\beta-\tau) & -1-\tau \\
-1-\tau & 1-\beta-\tau
\end{vmatrix} = 0
\]

So
\[
2(1-\beta-\tau)^2 - (1+\tau)^2 = 0
\]
\[\Rightarrow \quad \tau^2 - 2(3-2\beta)\tau + 2(1-\beta)^2 - 1 = 0
\]
The solutions are
\[
\tau = 3-2\beta \pm \sqrt{2(2-\beta)}
\]
So
\[
\omega = \sqrt{3-2\beta \pm \sqrt{2(2-\beta)}}
\]

b) For the system to become unstable, \(\tau \) has to crossover to negative region. The threshold \(\beta \) is when the one of the \(\omega \)'s become zero.

\[
\beta = \min \left(\frac{3+2\sqrt{2}}{2+\sqrt{2}}, \frac{3-2\sqrt{2}}{2-\sqrt{2}} \right) = \min \left(\frac{2+\sqrt{2}}{2}, \frac{2-\sqrt{2}}{2} \right)
\]
\[= \frac{2-\sqrt{2}}{2}
\]

c) Using the Raleigh function, we see that
\[
\mathbf{F} = \mathbf{F} \begin{pmatrix} 2 \\ 1 \end{pmatrix}
\]
which is proportional to the \(\mathbf{I} \) matrix, making life easy. Trying solution of the form \(\mathbf{A} e^{\mathbf{t}} \).
\[
\left| \begin{array}{c}
y + yF + y^2 I \\
y^2 \begin{pmatrix}
2(1-\beta) & -1 \\
-1 & 1-\beta
\end{pmatrix} + \frac{2}{K} Y \begin{pmatrix}
2 & 1 \\
1 & 1
\end{pmatrix} + m^2 Y^2 \begin{pmatrix}
2 & 1 \\
1 & 1
\end{pmatrix}
\end{array} \right| = 0
\]

\[
\left| \begin{array}{c}
y^2 \begin{pmatrix}
2(1-\beta) & -1 \\
-1 & 1-\beta
\end{pmatrix} + \left(\frac{\xi Y}{K} + \frac{\xi^2}{\omega_0^2} \right) \begin{pmatrix}
2 & 1 \\
1 & 1
\end{pmatrix}
\end{array} \right| = 0
\]

Notice that it is the same determinant we computed in part a), if we replace \(z \rightarrow \left(\frac{\xi Y}{K} + \frac{\xi^2}{\omega_0^2} \right) \).

That means the solutions are given by:

\[
\frac{\xi^2}{\omega_0^2} + \frac{\xi Y}{K} + 3 - 2\beta + \sqrt{\xi(2-\beta)} = 0
\]

When \(3 - 2\beta + \sqrt{\xi(2-\beta)} \) are positive, i.e., the system is stable, and \(\xi \) is small, \(y \) is going to be complex:

\[
y = -\frac{1}{2} \pm \frac{\sqrt{\xi(2-\beta)}}{2} i
\]
The damping rate \(\frac{1}{\tau} \) in half the sum of
the two roots of the quadratic equation:
\[
\frac{1}{\tau} = \frac{F \omega_n^2}{2K},
\]
from the coefficients of
the quadratic equation. It is the same
for both the frequencies.

Since \(K = m \omega_n^2 \),
\[
\tau = \frac{F}{2m}
\]

Honestly, we don't need a calculation here.

Remember \(\gamma + \gamma^* = \frac{F}{\tau} = \frac{\gamma^* F \alpha}{\alpha^* \tau} \)
for a particular mode.

Since \(F = \frac{F}{m} \) here, \(\frac{1}{\tau} = \frac{F}{2m} \)
for all modes.