Conservation Theorems and Symmetries Principle

\[\frac{\partial L}{\partial \dot{q}_j} = \text{could be interpreted as momenta.} \]

\[L = \frac{1}{2} \sum_i m_i (\dot{x}_i^2 + \dot{y}_i^2 + \dot{z}_i^2) - \sum_{\text{no velocities}} \]

\[\frac{\partial L}{\partial \dot{x}_i} = m_i \dot{x}_i = p_i \]

\[p_j = \frac{\partial L}{\partial \dot{q}_j} \]

canonical/conjugate momentum

Particles in an E.M. field

\[L = \sum \frac{1}{2} m_i \dot{r}_i^2 - \sum q_i \phi (\vec{r}_i) \]

\[+ \sum q_i \vec{\nabla} \phi (\vec{r}_i) \cdot \dot{\vec{r}_i} \]

\[\vec{p}_i = m_i \vec{\dot{r}_i} + q_i \vec{\nabla} \phi (\vec{r}_i) \]
If L is independent of q_j

$$\dot{p}_j = \frac{d}{dt} \frac{\partial L}{\partial \dot{q}_j} = \frac{\partial L}{\partial q_j} = 0$$

q_j is called cyclic/ignorable

The corresponding momentum is conserved:

$$p_j = \text{constant}$$

$$p_j(q_1, \ldots, q_n, \dot{q}_1, \ldots, \dot{q}_n, t) = \text{const.}$$

In principle, one could try to transform to coordinates so that "all" coordinates become cyclic. It works out for 'integrable' systems.

Move on it later.
For conservative systems, with \(V \) fixed, coordinates only:

\[
\dot{p}_j = \frac{d}{dt} \frac{\partial T}{\partial \dot{q}_j} = Q_j = \sum F_i \frac{\partial r_i}{\partial q_j}
\]

Remember:

\[
\frac{\partial r_i}{\partial q_j} = \frac{\partial r_i}{\partial \dot{q}_j} = \frac{\partial v_i}{\partial \dot{q}_j}
\]

\[
\dot{q}_j = \frac{\partial T}{\partial \dot{q}_j} = \sum m_v \frac{\partial r_i}{\partial q_j}
\]

Two examples:

Translation

\[
\mathbf{F}_i \rightarrow \mathbf{F}_i + \mathbf{F}_n
\]

\[
\frac{\partial r_i}{\partial q} = \mathbf{n}
\]

\[
\mathbf{p} = (\sum m_v \mathbf{v}_i) \cdot \mathbf{n} = \mathbf{n} \cdot \mathbf{p}
\]
Rotation

\[\text{d}r_i \cdot n \times \text{d}r_i = (\hat{n} \, d\theta) \times \text{d}r_i \]

\[\mathbf{Q} = \sum \mathbf{F}_i \cdot \frac{\partial \mathbf{v}_i}{\partial \theta} = \mathbf{F}_i \cdot (\hat{n} \times \text{d}r_i) \]

\[= \hat{n} \cdot (\sum \mathbf{r}_i \times \mathbf{F}_i) = \hat{n} \cdot \mathbf{N} \]

Component of torque in \(\hat{n}'s \) direction

\[p_\theta = \sum m_i \mathbf{v}_i \cdot (\hat{n} \times \text{d}r_i) \]

\[= \hat{n} \cdot \sum m_i \mathbf{r}_i \times \mathbf{v}_i \]

\[= \hat{n} \cdot \mathbf{L} \]

Conservation laws result of symmetry

\[L = \frac{1}{2} \sum m_i \mathbf{v}_i^2 + \sum V_i(r_i) \quad \Rightarrow \quad \mathbf{p}_\theta \text{ conserved} \]

\[= \frac{1}{2} \sum m_i \mathbf{v}_i^2 + \sum V_i(r_i) + \sum V_i(r_i) \quad \Rightarrow \quad \mathbf{L} \text{ conserved} \]
Energy conservation and time translation invariance

\[\frac{dL}{dt} = \sum_j \left(\frac{\partial L}{\partial q_j} \dot{q}_j + \frac{\partial L}{\partial \dot{q}_j} \ddot{q}_j \right) + \frac{eL}{\kappa} \]

\[= \sum_j \left(\frac{1}{d+1} \left(\frac{\partial T}{\partial q_j} \dot{q}_j + \frac{\partial T}{\partial \dot{q}_j} \ddot{q}_j \right) \right) + \frac{eL}{\kappa} \]

\[= \frac{d}{dt} \sum_j \frac{eL}{\kappa} \frac{\partial}{\partial \dot{q}_j} \dot{q}_j + \frac{eL}{\kappa} \]

\[\frac{d}{dt} \mathbf{h} = -\frac{\partial L}{\partial \dot{q}_j} \]

\[\mathbf{h} = \sum_j \frac{eL}{\kappa} \frac{\partial}{\partial \dot{q}_j} \dot{q}_j - \mathbf{L} \quad \text{is the Hamiltonian / Energy function} \]

If \(L \) has no explicit time dependence

\[\mathbf{h} = \text{constant} \quad (\text{Jacobi's integral}) \]
Remember Rayleigh dissipation function?

\[\frac{d}{dt} \frac{\partial L}{\partial \dot{q}_j} - \frac{\partial L}{\partial q_j} = -\frac{\partial F}{\partial q_j} \]

Some derivation

\[\frac{dh}{dt} = -\frac{\partial L}{\partial t} - \sum \frac{\partial F}{\partial q_j} \]

If F is a homogeneous function of degree 2 in q's

[Example: $\sum f(q_i q_j)$, but also $\sum \frac{\partial F}{\partial q_i} q_i q_j$]

Then

\[\sum \frac{\partial F}{\partial q_j} q_j = 2F \]

So

\[\frac{dh}{dt} = -2F - \frac{\partial L}{\partial t} \]

When $\frac{\partial L}{\partial t} = 0$
\[\frac{dh}{dt} = -2F \]

Change in energy

\[= -2 \int F \, dt \]

Interesting example: circuits

q - charge \quad i = \dot{q}

\[L = L_0 - \frac{q^2}{2C} \]

\text{Contr. from Inductance (like K.E.)}

\text{Contr. from Capacitance (like P.E.)}

\[F = \frac{1}{2} R \dot{q}^2 \]