1. Consider a system of 3 weights suspended by pulleys:

\[l_1, l_2 = \text{total rope lengths} \]

\[x \]

Assume that the pulleys and the cords are massless and that there is no friction. Each pulley has a radius \(r \) and the coordinates of masses \(m_1, m_2, m_3 \) are \(x_1, x_2, x_3 \) respectively. Write down the equations of motion for all 3 masses. Solve the resulting equations with \(x_i(t=0) = x_{i,0} \) and \(x_{i,0}(t=0) = 0 \), \(i = 1, 2, 3 \).
Consider a rotating horizontal rod of the total length L. Two spheres of mass m can glide along the rod as shown in the Fig. below:

Imagine that the rod is given an initial angular velocity ω_0 and the spheres glide without friction. Assume that the spheres collide with the stops and the collision is completely inelastic. Compute the final angular velocity ω_1, the change in the kinetic energy ΔT_{rot}, and where did the extra energy go or come from?
Consider a spherical pendulum of mass m and length b:

$$\ddot{\theta} + c \dot{\theta} + \frac{g}{b} \sin \theta = 0$$

Find the generalized momenta and write down (but do not solve!) Hamilton's EoM for this system. Comment on momentum conservation and find a cyclic coordinate (if any).
Consider an arbitrary function \(g(q, p, t) \), where \(q = \{q_i\}_{i=1}^n \) are generalized coordinates and \(p = \{p_i\}_{i=1}^n \) are canonical momenta.

(a) Write down an EoM for \(g \) using Poisson brackets

(b) Write down EoMs for \(p_j \) & \(q_j \), \(j = 1, \ldots, n \) using Poisson brackets

(c) Find \([p_i, p_j] \), \([q_i, q_j] \) and \([p_i, q_j] \)

(d) Using results from (a), write down the conditions for \(g \) to be a constant of the motion of the system.
The potential energy between two neutral atoms is given by:

$$v(r) = 4 \varepsilon \left[\left(\frac{e}{r} \right)^{12} - \left(\frac{e}{r} \right)^{6} \right],$$

where \(r \) is the separation distance.

Atom masses:

\(m_1, m_2 \)

(a) Find the equilibrium separation \(r_0 \).

(b) Find the frequency of small oscillations about the equilibrium position. Qualitatively, how will the average separation \(\langle r \rangle \) vary with the amplitude of the oscillation? [This question does not assume small oscillations]