Lecture 14
Symmetrical top with one point fixed

\[x'y'z': \text{ lab} \]
\[xyz: \text{ body} \]

\[\begin{aligned}
\theta & \quad \text{rotation, "bobbing" up and down along } z \text{ (and the top) wrt } z', \\
\phi & \quad \text{precession, rotation of } z \text{ around } z' \text{ (imagine that } \theta \text{ is fixed),} \\
\gamma & \quad \text{rotation of the top around } z \uparrow \text{ body principal axis}
\end{aligned} \]

Often, \(\gamma \gg \theta, \phi \) is in practice
Use the Lagrangian approach:

\[T = \frac{I_1}{2} (\dot{\omega}_1^2 + \dot{\omega}_2^2) + \frac{I_3}{2} \dot{\omega}_3^2 \]

It can be shown that

\[
\begin{align*}
\omega_1 &= \dot{\theta} \sin \theta \sin \gamma + \dot{\gamma} \cos \theta, \\
\omega_2 &= \dot{\gamma} \sin \theta \cos \gamma - \dot{\theta} \sin \gamma, \\
\omega_3 &= \dot{\gamma} \cos \theta + \dot{\gamma}.
\end{align*}
\]

Then

\[
\begin{align*}
\omega_1^2 + \omega_2^2 &= \dot{\gamma}^2 \sin^2 \theta \sin^2 \gamma + \dot{\theta}^2 \cos^2 \gamma + \\
&+ 2 \dot{\theta} \dot{\gamma} \sin \theta \sin \gamma \cos \gamma + \dot{\gamma}^2 \sin^2 \theta \cos^2 \gamma + \\
&+ \dot{\theta}^2 \sin^2 \gamma - 2 \dot{\theta} \dot{\gamma} \sin \theta \cos \gamma \sin \gamma = \\
&= \dot{\gamma}^2 \sin^2 \theta + \dot{\theta}^2.
\end{align*}
\]

Therefore,

\[
T = \frac{I_1}{2} (\dot{\gamma}^2 \sin^2 \theta + \dot{\theta}^2) + \frac{I_3}{2} (\dot{\gamma} \cos \theta + \dot{\gamma})^2
\]

Furthermore, the potential energy of any body is

\[
V = -\sum \mathbf{m}_i \mathbf{r}_i \mathbf{g} = -\mathbf{M} \mathbf{g} \cdot \mathbf{\dot{r}}.
\]

In this case, \(V = M g l \cos \theta \), and
\[I = \frac{I_1}{2} (\dot{\theta} + \dot{\gamma}^2 \sin^2 \theta) + \frac{I_3}{2} (\dot{\gamma} + \dot{\gamma} \cos \theta)^2 - Mg l \cos \theta. \]

Note that \(\dot{\gamma} \) and \(\dot{\gamma} \) are cyclic co-ords:

(1)

\[p_\gamma = \frac{\partial I}{\partial \dot{\gamma}} = I_3 (\dot{\gamma} + \dot{\gamma} \cos \theta) = I_3 \omega_3 \equiv I_1 a = \text{const}, \]

\(\omega_3 \) yielding \(\omega_3 = \text{const} \)

Next,

(2)

\[p_\theta = \frac{\partial I}{\partial \dot{\theta}} = (I_1 \sin^2 \theta + I_3 \cos^2 \theta) \dot{\theta} + I_3 \dot{\gamma} \cos \theta \equiv I_1 b = \text{const} \]

Finally,

\[E = T + V = \frac{I_1}{2} (\dot{\theta}^2 + \dot{\gamma}^2 \sin^2 \theta) + \frac{I_3}{2} \omega_3^2 + M g l \cos \theta = \text{const} = \text{const}. \]

Now,

(1)

\[I_3 \dot{\gamma} = I_1 a - I_3 \dot{\gamma} \cos \theta \quad \text{and} \]

(2)

\[I_1 \dot{\theta} \sin^2 \theta + I_1 a \cos \theta = I_1 b, \quad \text{yielding} \]

\[\dot{\gamma} = \frac{b - a \cos \theta}{\sin^2 \theta}. \]

Thus, if we know \(\theta(t) \), we could find \(\dot{\gamma} \) and then \(\dot{\theta} \):

\[\dot{\theta} = \frac{b - a \cos \theta}{\sin^2 \theta}. \]
\[\psi = \frac{I_1}{I_3} a - \frac{6 - a \cos \theta}{\sin^2 \theta} \cos \theta \]

We can get an eq'n for \(\theta \) alone:

\[E - \frac{I_3}{2} \dot{\theta}^2 = \frac{I_1 \dot{\theta}^2}{2} + \frac{I_1}{2} \frac{(6 - a \cos \theta)^2}{\sin^2 \theta} + Mg \ell \cos \theta \]

\(E' = \text{const} \) \uparrow \quad \text{effective 1D potential} \]

Define \(\psi \) normalized constants:

\[
\begin{align*}
L &= \frac{2E - I_3 \dot{\theta}^2}{I_1}, \\
\beta &= \frac{2Mg \ell}{I_1}, \\
\alpha &= \frac{p_\psi}{I_1}, \\
\beta &= \frac{p_\beta}{I_1}
\end{align*}
\]

Then (*) becomes

\[L = \dot{\theta}^2 + \frac{(b - a \cos \theta)^2}{\sin^2 \theta} + \beta \cos \theta \]

Next, introduce \(U = \cos \theta \):

\[\dot{U} = -\sin \theta \dot{\theta}, \quad U^2 = \sin^2 \theta \times \dot{\theta}^2 \]
\[
\frac{2 \sin^2 \theta}{1-u^2} = \frac{\theta}{u} + \frac{(b-a \cos \theta)^2 + \beta \sin^2 \theta \cos \theta}{u} \cdot \frac{1-u^2}{u},
\]

\[
u^2 = (2-\beta u)(1-u^2) - (b-a u)^2 \leq \beta u^3 - (2+a^2) u^2 + (2a \beta - \beta) u + (2-b^2) \equiv f(u)
\]

Note that \(\beta > 0 \), with \(\beta = 0 \) iff \(l = 0 \) ⇒ the fixed point is the CoM, as in gyroscopes. Then \(f(u) \) is quadratic. Here we will focus on \(\beta > 0 \).

\[
f(u) = 0 \quad (i.e. \text{the roots of the cubic eq'n}) \text{ provide information about the turning points.}
\]

Physically, \(-1 \leq u \leq 1\). Moreover, \(\cos \theta \).

If the top is on a horizontal surface, \(u > 0 \) since \(\cos \theta \) is never negative. Then the turning points of \(u \) are the turning points of \(\theta \) since \(\sin \theta \) does not change sign between \(0, \frac{\pi}{2} \).

Let's formally consider \(f(u) \) in the \((-\infty, +\infty)\) range. Clearly, for \(|u| \gg 1\):

\[
f(u) \approx \beta u^3 \quad [\text{pos. for } u > 0 \text{ & neg. for } u < 0]
\]

Next, focus on \(u = \pm 1 \):
\[f(1) = \beta - (a + a^2) + (2ab - \beta) + (a - b^2) = - (a - b)^2 < 0. \]

Likewise,

\[f(-1) = -\beta - (a + a^2) - (2ab - \beta) + (a - b^2) = - (a + b)^2 < 0. \]

The only exception is \(\theta = 0 \) (vertical top) because then

\[
\begin{align*}
\Phi &= I_3 (\dot{\varphi} + \dot{\psi}) = I_1 a, \\
\Psi &= I_3 \dot{\psi} + I_3 \dot{\varphi} = I_1 b
\end{align*}
\]

This means that \(f(1) = 0 \) and \(u = 1 \) is a root. If \(f(1) \) is not a root,

\(f(u) \) qualitatively looks like this:

\[U_1 \text{ & } U_2 \text{ are located somewhere between } -1 \text{ & } 1; \cos \theta \text{ moves either between } U_1 \text{ & } U_2 \text{ or between } U_{\text{min}} \text{ & } U_2, \text{ where } U_{\text{min}} \text{ is given by the max angle } \Theta_{\text{max}}. \]
allowed by the horizontal surface constraint.

Top's motion is often visualized as a trace its z-axis would have left on a unit sphere centered on a fixed point. This trace is known as the locus of the z-axis. The locus lies between 2 circles: \(\theta_1 = \arccos u_1 \) \& \(\theta_2 = \arccos u_2 \), at which \(\dot{\theta} = 0 \). The shape of the locus curve is largely determined by \(u' = \frac{b}{a} \).

Suppose that \(u' > u_2 \), then

\[
\dot{g} = \frac{b - a \cos \theta}{\sin^2 \theta} = \frac{u' - u}{1 - u^2} a > 0
\]

\(\uparrow \) precession velocity

\(\dot{g} > 0 \) means that \(g \) only increases with time:

In general, the top executes nutation (changes in \(\theta \)) \& precession (changes in \(\dot{\theta} \)) as it rotates around its own z-axis.
If \(u_1 < u' < u_2 \), \(\dot{\theta} > 0 \) at \(u_1 \), but
\(\dot{\theta} < 0 \) at \(u_2 \). In general, \(\dot{\theta} \) does
not vanish on average, so there's
still precession overall:

What if \(u' = u_{21} \)? (for example;
\(u' = u_1 \) is similar)

Then \(\dot{\theta} = 0 \) if \(u = u_{21} \) and \(\dot{\theta} > 0 \) if \(u = u_1 \):

Consider a top spinning around its
\(z \)-axis (inclined at some angle \(\theta_0 \) wrt \(z' \))
at \(t = 0 \): \(\theta = \theta_0 \), \(\dot{\theta} = 0 \), \(\dot{\theta}_z = 0 \) are the
initial conditions.
Since \(\theta = 0 \), \(u = 0 \) and \(u_0 = \cos \theta_0 \) is automatically a root of \(f(u) \).
Since \(\dot{\theta} = 0 \), \(b - d u_0 = 0 \), or
\[
\frac{b}{a} = u_0.
\]

Now, \(E' = E - \frac{I_3}{2} \omega_3^2 = Mgl \cos \theta_0 \) at \(t = 0 \).
As \(t \to \infty \), \(\theta \) and \(\dot{\theta} \) become non-zero, and the corresponding kinetic energy becomes positive. This can only be accomplished if \(\dot{V} \dot{W} \) (i.e., \(\theta \dot{\theta} \)) since the total energy is conserved. Thus \(\theta_0 = \theta_2 \) which corresponds to \(u_0 = \frac{b}{a} \), meaning that
\[
\frac{b}{a} = u_0 = u' = u_2.
\]

In other words, the top always starts to fall after it's released and continues to fall until \(\theta = \theta_1 \), at which point it rebounds back to \(\theta_2 \). Precession is always in one direction; the locus is shown in the last Fig. above.