1. Three identical masses m are connected by two springs as shown:

\[\begin{array}{c}
\text{A} \quad \text{B} \quad \text{C} \\
\text{m} \quad \text{m} \quad \text{m}
\end{array} \]

Here, k is the spring constant and the motion is 1D.

At $t=0$, all masses are at rest at their equilibrium positions. The leftmost mass A is then subjected to an external driving force:

\[F(t) = f \cos(\omega t) , \quad t \geq 0 \]

Find the motion of mass C.
Consider a 1D particle subject to force \(F = \begin{cases}
0, & t < 0 \\
\frac{F_0 t}{\tau} \cos(\omega t), & 0 \leq t < \tau \\
F_0 \cos(\omega t), & t \geq \tau
\end{cases} \)

Assuming that the particle is at rest at \(t < 0 \), calculate the subsequent motion of the particle (i.e., find \(x(t) \)).