Physics 502: Problem Set 3 (DUE ON FRIDAY 2/24)

1) A hydrogen atom is in the ground state at \(t = -\infty \). A weak electric field \(E(t) = E_0 \hat{z} e^{-|t/\tau|} \) is applied starting at time \(t = -\infty \).

a) Using first order TDPT, find the probabilities for the atom to end up in each of the \(|21m\rangle\) states (i.e., for each of the three values of \(m \)). (You may use that \(\langle 210\vert z\vert 100 \rangle = \frac{2\pi^3}{3^5}a_0 \).

b) Discuss the limit \(\tau \to \infty \); does the result agree with what you would expect based on the adiabatic approximation?

2) Consider a composite system made of two spin 1/2 particles with Hamiltonian:

\[
H = \begin{cases}
0 & \text{if } t < 0 \\
\frac{4\Delta}{\hbar^2} \vec{S}_1 \cdot \vec{S}_2 & \text{if } t > 0
\end{cases}
\]

(1)

Suppose the system is in \(|-+\rangle\) for \(t \leq 0 \). Find as a function of time the probability of being found in each of the following states, \(|++\rangle\), \(|+-\rangle\), \(|-+\rangle\) and \(|--\rangle\) by:

a) Solving the problem exactly.

b) Using first order TDPT. Under what conditions does (b) give the correct results?

3) A perturbation consisting of a series of \(N \) oscillatory pulses

\[
V(t) = \sum_{j=1}^{N} A e^{-i\omega_0 t} f(t - t_j)
\]

(2)

is applied to a system in which two discrete levels \(s \) and \(n \) are separated in energy by \(\hbar\omega_0 \). Here \(A \) is an operator, \(f(t) \) is an envelope function describing the shape of each pulse, and \(t_j \) is the time of arrival of the \(j \)th pulse.

a) Show that, in first-order time-dependent perturbation theory, the probability of excitation from \(s \) to \(n \) is proportional to \(N^2 \).

b) This peculiar result is a consequence of the fact that each pulse is applied in phase, i.e., the excitation is coherent. How does the probability scale with \(N \) if the excitation is instead incoherent, i.e., each term in the expression for \(V(t) \) is multiplied by a random phase \(e^{i\phi_j} \)? (If you think of the photons emerging from a light bulb or a laser as being the pulses, you can appreciate the fact that coherent sources such as lasers may have very different effects on matter than incoherent ones.)
4) A hydrogen atom initially in its $1s$ ground state is subject to an electric field $E(t) = E_0 \cos(\omega t)\hat{z}$ whose frequency is large enough that $\hbar \omega$ exceeds the ionization energy of 1 Ry. Assuming a plane-wave final state, what is the rate for transitions to an ionized state, and what is the angular distribution of emitted electrons? (Note: you will need to evaluate the matrix element $\langle \vec{k} | z | 1s \rangle$. To proceed with the rest of the problem, it is sufficient to evaluate this to leading nonzero order in the small k limit. For bonus points, figure out how to evaluate the matrix element exactly.)

5) In class we derived the $\omega = 0$ version of the transition probability as a function of time for transitions of $s \rightarrow n \neq s$:

$$P(s \rightarrow n) = \frac{4}{\hbar^2} |V_{ns}|^2 \sin^2 \frac{\omega_{ns} t}{\omega_{ns}}$$ \hspace{1cm} (3)

We did this starting from the result for $\omega \neq 0$ obtained using TDPT, and then taking $\omega \rightarrow 0$. Rederive this result more directly using time-independent perturbation theory.