1) Using the matrix elements of the operator L_x in the subspace for $l = 1$ derived in the previous homework, show that the matrix for arbitrary rotations around the x-axis is given by

$$D_{mm'}(\theta) = \exp(-i\theta L_x/\hbar) = \begin{pmatrix}
\frac{1}{2} \cos \theta + \frac{i}{2} \sin \theta & -\frac{i}{\sqrt{2}} \sin \theta & \frac{1}{2} \cos \theta - \frac{i}{2} \\
-\frac{i}{\sqrt{2}} \sin \theta & \cos \theta & -\frac{i}{\sqrt{2}} \sin \theta \\
\frac{1}{2} \cos \theta - \frac{i}{2} & -\frac{i}{\sqrt{2}} \sin \theta & \frac{1}{2} \cos \theta + \frac{i}{2}
\end{pmatrix} \quad (1)$$

Ans.: One can diagonalize 3×3 matrix of the operator L_x, and derive the matrix of rotation. The alternative derivation reliance on the Taylor series of the exponent. One can notice that

$$
\begin{pmatrix}
0 & 1 & 0 \\
1 & 0 & 1 \\
0 & 1 & 0
\end{pmatrix}^2 =
\begin{pmatrix}
1 & 0 & 1 \\
0 & 2 & 0 \\
1 & 0 & 1
\end{pmatrix}
$$

and

$$
\begin{pmatrix}
0 & 1 & 0 \\
1 & 0 & 1 \\
0 & 1 & 0
\end{pmatrix}^3 =
\begin{pmatrix}
0 & 2 & 0 \\
2 & 0 & 2 \\
0 & 2 & 0
\end{pmatrix}
$$

hence the Taylor series

$$D_{mm'}(\theta) = \exp(-i\theta L_x/\hbar) = \exp\left(-i\frac{\theta}{\sqrt{2}} \begin{pmatrix}
0 & 1 & 0 \\
1 & 0 & 1 \\
0 & 1 & 0
\end{pmatrix}\right) = \sum_n \frac{1}{n!} \left(-i\frac{\theta}{\sqrt{2}}\right)^n \begin{pmatrix}
0 & 1 & 0 \\
1 & 0 & 1 \\
0 & 1 & 0
\end{pmatrix}^n \quad (2)$$

gives

$$D_{mm'}(\theta) = 1 + \sum_{n=1,3,...} \frac{1}{n!} \left(-i\frac{\theta}{\sqrt{2}}\right)^n \begin{pmatrix}
0 & 1 & 0 \\
1 & 0 & 1 \\
0 & 1 & 0
\end{pmatrix} 2^{(n-1)/2} + \sum_{n=2,4,...} \frac{1}{n!} \left(-i\frac{\theta}{\sqrt{2}}\right)^n \begin{pmatrix}
1 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 1
\end{pmatrix} 2^{(n-1)/2}$$

$$D_{mm'}(\theta) =
\begin{pmatrix}
1/2 & 0 & -1/2 \\
0 & 0 & 0 \\
-1/2 & 0 & 1/2
\end{pmatrix} + \frac{1}{\sqrt{2}} (-i \sin \theta) \begin{pmatrix}
0 & 1 & 0 \\
1 & 0 & 1 \\
0 & 1 & 0
\end{pmatrix} + \frac{1}{2} \cos \theta \begin{pmatrix}
1 & 0 & 1 \\
0 & 2 & 0 \\
1 & 0 & 1
\end{pmatrix} \quad (3)$$
which is equivalent to the given matrix above.

Show that applying this matrix for the case of \(\theta = \pi \) on the eigenfunction \(|l = 1, m = 1\rangle\) gives the same result as rotating explicitly the function \(Y_{1,1}(\theta, \phi) = -\sqrt{\frac{3}{8\pi}} \sin \theta e^{i\phi} \) by 180-degrees around the x-axis.

Ans.: The rotation by 180 degrees is

\[
D(\pi) = \begin{pmatrix}
0 & 0 & -1 \\
0 & -1 & 0 \\
-1 & 0 & 0
\end{pmatrix}
\]

hence rotating \((1, 0, 0)\) gives \((0, 0, -1)\).

The unrotated function corresponding to \((1, 0, 0)\) is \(Y_{1,1}(\theta, \phi) = -\sqrt{\frac{3}{8\pi}} \sin \theta e^{i\phi} = -\sqrt{\frac{3}{8\pi}}(x + iy) \) and the rotated, corresponding to \((0, 0, -1)\) is \(-Y_{1,-1}(\theta, \phi) = -\sqrt{\frac{3}{8\pi}} \sin \theta e^{-i\phi} = -\sqrt{\frac{3}{8\pi}}(x - iy) \).

Rotation around x axis by 180 degrees amounts to \(y \rightarrow -y \) and \(z \rightarrow -z \). Indeed this transforms \(Y_{1,1} \) into \(-Y_{1,-1}\).

2) A hydrogen-like atom with atomic number \(Z \) is in its ground state when, due to nuclear processes (operating at a time scale much shorter than the characteristic time scale of the \(H \) atom), its nucleus is modified to have the atomic number increased by one unit, i.e. to \(Z + 1 \). The electronic state of the atom does not change during this process. What is the probability of finding the atom in the new ground state at a later time? Answer the same question for the new first excited state.

Ans.: The hydrogen ground state wave function is

\[
\psi_{1,0,0}(r) = \frac{Z^{3/2}}{\sqrt{\pi a_0^3}} e^{-Zr/a_0}
\]

Once the atomic number is changed, the ground state becomes

\[
\overline{\psi}_{1,0,0}(r) = \frac{(Z + 1)^{3/2}}{\sqrt{\pi a_0^3}} e^{-(Z+1)r/a_0}
\]

and the first excited state becomes

\[
\overline{\psi}_{2,0,0}(r) = \frac{(Z + 1)^{3/2}}{\sqrt{32\pi a_0^3}} (2 - \frac{Z + 1}{a_0}r)e^{-(Z+1)r/(2a_0)}
\]

The probabilities are \(P_1 = (\overline{\psi}_{1,0,0}|\psi_{1,0,0})^2 \) and \(P_2 = (\overline{\psi}_{2,0,0}|\psi_{1,0,0})^2 \).

The evaluation of the radial integrals gives \(P_1 = \frac{(Z(Z+1))^3}{(Z+\frac{1}{2})^6} \) and \(P_2 = \frac{2^{11}}{3^8} (\frac{Z(Z+1)}{Z+\frac{1}{2}})^3 \).
3) Consider the delta-shell potential model, which is a very simple model of the force experienced by a neutron interacting with a nucleus. In this model, the force experienced by neutron has the form

\[V(r) = -\frac{\hbar^2 g^2}{2\mu} \delta(r - a) \] (8)

Here \(r \) is written in spherical coordinates.

Investigate the existence of bound states in the case of negative energy.

a) Write down the Schroedinger equation for \(u_l(r) \) in spherical coordinates using potential \(V(r) \).

Ans.: Schroedinger equation reads

\[-u'' - g^2 \delta(r - a)u + \frac{l(l + 1)}{r^2} u = -\kappa^2 u \] (9)

where

\[\kappa = \sqrt{-\frac{2\mu E}{\hbar^2}}. \]

b) What are solutions for free particles (\(V = 0 \))? Which solution can be used for interior part (\(r < a \)) and which for exterior part (\(r > a \))?

Ans.: The solution for free particles was given in class, namely spherical bessel and spherical neuman functions. However, these functions are solutions for \(E > 0 \). Here we need bound states, which can be obtained by changing \(kr \rightarrow ikr \) in the argument of the solution.

The solutions are thus

\[u(r) = A \ r \ j_l(ikr) + B \ r \ n_l(ikr) \] (10)

For small \(r \), only \(j_l(x) \) are well behaved. For large \(r \) we need solution that falls off.

The following large \(x \gg 1 \) expansion of spherical bessel and neuman functions was given in class

\[j_l(x) \approx \frac{1}{x} \sin(x - l\pi/2) \] (11)

\[n_l(x) \approx -\frac{1}{x} \cos(x - l\pi/2) \] (12)

For imaginary argument \(ix \), these functions are

\[j_l(ix) \approx \begin{cases} \frac{\sinh(x)}{x} (-1)^{l/2} & l = 0, 2, 4, \ldots \\ -i\frac{\cosh(x)}{x} (-1)^{(l+1)/2} & l = 1, 3, 5, \ldots \end{cases} \] (13)

\[n_l(ix) \approx \begin{cases} \frac{i\cosh(x)}{x} (-1)^{l/2} & l = 0, 2, 4, \ldots \\ \frac{\sinh(x)}{x} (-1)^{(l+1)/2} & l = 1, 3, 5, \ldots \end{cases} \] (14)
The following combination of bessel and neuman function falls off in infinity

\[h_l(ix) = n_l(ix) - ij_l(ix) \propto \frac{e^{-x}}{x} \]

(15)

This function is also called spherical Henkel function. One can check explicitly

\[h_l(ix) \approx \begin{cases}
 i(-1)^{l/2}\frac{e^{-x}}{x} & l = 0, 2, 4, \ldots \\
 (-1)^{(l-1)/2}\frac{e^{-x}}{x} & l = 1, 3, 5, \ldots
\end{cases} \]

(16)

Hence, the solution is

\[u_l(r) = \begin{cases}
 A r j_l(i\kappa r) & r < a \\
 B r h_l(i\kappa r) & r > a
\end{cases} \]

(17)

c) Integrating around the point \(r = a \), determine the discontinuity condition, and hence equation for the eigenstates.

Ans.: The integration of the Schroedinger equation gives

\[u'(a^+) - u'(a^-) = -g^2 u(a) \]

(18)

We have two boundary conditions: i) continuity at \(r = a \) gives

\[A a j_l(i\kappa a) = B h_l(i\kappa a) \]

(19)

and ii) the discontinuity of the Schroedinger equation gives

\[B a h'_l(i\kappa a) - A a j'_l(i\kappa a) = -g^2 A a j_l(i\kappa a) \]

(20)

The two equations can be combined together into the following condition

\[\frac{j'_l(i\kappa a)}{j_l(i\kappa a)} - \frac{h'_l(i\kappa a)}{h_l(i\kappa a)} = \frac{g^2 a}{\kappa a} \]

(21)

d) Assuming that \(g^2 a = 2 \), solve (possibly numerically) for bound state energy at \(l = 0 \).

Ans.: For \(l = 0 \)

\[j_0(x) = \frac{\sinh(x)}{x} \]

(22)

\[h_0(x) = ie^{-x} \]

(23)

hence the above condition gives

\[\frac{2}{1 - e^{-2x}} = \frac{g^2 a}{x} \]

(24)

We are hence looking for the solution of

\[x = 1 - e^{-2x} \]

for which numerical solution is \(\kappa a = 0.796812 \). The bound state energy hence is

\[E = -\frac{\hbar^2}{2\mu a^2} (0.796812)^2 \]

(25)
4) A beam of composite particles is subject to a simultaneous measurement of the spin operators \(S^2 \) and \(S_z \). The measurement gives pairs of values \(s = m_s = 0 \) and \(s = 1, m_s = 1 \) with probabilities \(3/4 \) and \(1/4 \) respectively.

(a) Reconstruct the state of the beam immediately before the measurement.

\textbf{Answ.}: Before the measurements, the wave function must have been

\[
|\psi\rangle = \frac{\sqrt{3}}{2} |0,0\rangle + e^{i\alpha} \frac{1}{2} |1, -1\rangle
\]

where \(\alpha \) is any real number.

(b) The particles in the beam with \(s = 1, m_s = 1 \) are separated out and subjected to a measurement of \(S_x \). What are the possible outcomes and their probabilities?

\textbf{Answ.}: Possible outcomes are eigenvalues of \(S_x \) operator for \(s = 1 \) particles. To compute probabilities, we need eigenvectors of operator \(S_x \) (in the \(s = 1 \) sector). The eigenvectors are

\begin{align}
|S_x = +1\rangle &= \frac{1}{2} |1, 1\rangle + \frac{1}{\sqrt{2}} |1, 0\rangle + \frac{1}{2} |1, -1\rangle \\
|S_x = -1\rangle &= \frac{1}{2} |1, 1\rangle - \frac{1}{\sqrt{2}} |1, 0\rangle + \frac{1}{2} |1, -1\rangle \\
|S_x = 0\rangle &= \frac{1}{\sqrt{2}} (|1, 1\rangle - |1, -1\rangle)
\end{align}

The probabilities are then

\begin{align}
P(+1) &= |\langle S_x = +1 | 1, 1 \rangle|^2 = 1/4 \\
P(-1) &= |\langle S_x = -1 | 1, 1 \rangle|^2 = 1/4 \\
P(0) &= |\langle S_x = 0 | 1, 1 \rangle|^2 = 1/2
\end{align}

(c) For the purpose of understanding the symmetry of the wave function, it is convenient to replace spin operators with corresponding orbital angular momentum operators, i.e., \(S_x \rightarrow L_x \) and \(S^2 \rightarrow L^2 \). Write down the spatial wave functions of the states that arise from the second measurement if the operator was orbital angular momentum operator \(L_x \). Give the \(x, y, z \) dependence of such wave functions.

\textbf{Hint}: First figure out the decomposition of the measured states in terms of \(|l, m_l\rangle \) states. Using spherical harmonics, express the resulting wave function in real space.

\textbf{Answ.}: We repeat the decomposition

\begin{align}
|L_x = +1\rangle &= \frac{1}{2} |1, 1\rangle + \frac{1}{\sqrt{2}} |1, 0\rangle + \frac{1}{2} |1, -1\rangle \\
|L_x = -1\rangle &= \frac{1}{2} |1, 1\rangle - \frac{1}{\sqrt{2}} |1, 0\rangle + \frac{1}{2} |1, -1\rangle \\
|L_x = 0\rangle &= \frac{1}{\sqrt{2}} (|1, 1\rangle - |1, -1\rangle)
\end{align}
and use standard expressions for the spherical harmonics, to obtain

\[
\langle r | L_x = \pm 1 \rangle = \sqrt{\frac{3}{8\pi}} \frac{(\pm z - iy/r)}{r} \\
\langle r | L_x = 0 \rangle = -\sqrt{\frac{3}{4\pi}} \frac{x}{r} \tag{35, 36}
\]