1) Consider a system of two non-identical fermions, each with spin $1/2$. One is in a state with $S_{1x} = \frac{\hbar}{2}$, while the other is in a state with $S_{2y} = -\frac{\hbar}{2}$. What is the probability of finding the system in a state with total spin quantum numbers $s = 1$, $m_s = 0$, where m_s refers to the z-component of the total spin?

 a) First, find the eigenstate of the operator S_{1x} with the eigenvalue $\frac{\hbar}{2}$. Also find the eigenstate of S_{2y} with the eigenvalue $-\frac{\hbar}{2}$.

 b) Using the rules for summation of angular momenta, find the expression for the state $|s = 1, m_s = 0\rangle$.

 c) Calculate the probability.

2) Consider two spin-1 particles that occupy the state $|s_1 = 1, m_1 = 1; s_2 = 1, m_2 = 0\rangle$.

 What is the probability of finding the system in an eigenstate of the total spin S^2 with quantum number $s = 1$? What is the probability for $s = 2$?

3) a) Construct the spin singlet ($S = 0$) state and the spin triplet ($S = 1$) states of a two electron system.

 b) In the experiment we have two electrons, which are in the spin-singlet state. They move in the opposite direction along the y-axis, and two observers A and B measure the spin state of each electron. A measures the spin component along the z axis, and B measures the spin component along an axis making an angle θ with the z axis in the xz-plane. Suppose that A’s measurement yields a spin down state and subsequently B makes a measurement. What is the probability that B’s measurement yields an up spin (measured along an axis making an angle θ with the z-axis)?

The explicit formula for the representation of the rotation operator $\exp(-iS \cdot \hat{n}\theta/\hbar)$ in the spin space is given by the spin 1/2 Wigner matrix

\[
D^{(1/2)}(\hat{n}, \theta) = \begin{pmatrix}
\cos(\theta/2) - in_z \sin(\theta/2) & (-in_x - n_y) \sin(\theta/2) \\
(-in_x + n_y) \sin(\theta/2) & \cos(\theta/2) + in_z \sin(\theta/2)
\end{pmatrix}
\]

(1)

and $\hat{n} = n_x \hat{e}_x + n_y \hat{e}_y + n_z \hat{e}_z$ ($|\hat{n}| = 1$) is the axis of rotation.
4) The Wigner-Eckart theorem is given by

\[\langle n'j'm'|T_l^{(l)}|njm \rangle = \langle j'm'|T_l|njm \rangle \frac{\langle \langle n'j'|T_l|n \rangle \rangle}{\sqrt{2j+1}} \]

(a) Explain the meaning of the two terms on the right hand side.

(b) The interaction of the electromagnetic field with a charged particle is given by

\[\Delta H = \frac{e}{2m} \mathbf{A} \cdot \mathbf{p} \]

If the electromagnetic fields are in the form of a plane wave, then \(\mathbf{A} = A_0 \hat{\epsilon} e^{i\mathbf{k}\cdot\mathbf{r}} \), where \(\hat{\epsilon} \) is the polarization of the plane wave. Assuming that the wavelength \(\lambda = 2\pi/k \) is much larger than the atomic size, we may write

\[\mathbf{A} = A_0 \hat{\epsilon}(1 + i\mathbf{k} \cdot \mathbf{r} + \cdots) \]

such that

\[\Delta H \approx \frac{e}{2m} A_0 \hat{\epsilon} \cdot \mathbf{p}(1 + i\mathbf{k} \cdot \mathbf{r}) \]

Here we kept both the dipole (the first term), and the quadrupole terms (the second term).

If the field is polarized along the \(x \)-axis (\(\hat{\epsilon} = \hat{e}_x \)), and the wave propagation is along the \(z \)-axis (\(\mathbf{k} = k\hat{e}_z \)) express the Hamiltonian in terms of spherical harmonics. Note that \(\mathbf{p} \) is a vector operator, and transforms under rotation as \(\mathbf{r} \). For symmetry consideration you may therefore replace \(\mathbf{p} \) by \(C\mathbf{r} \).

(c) For the above configuration, derive the selection rules for the dipole and the quadrupole transitions, by considering the transition probability matrix elements

\[|\langle \psi_f|\Delta H|\psi_i \rangle|^2 = |\langle l_f m_f |\Delta H | l_i m_i \rangle|^2 \]. Note: selection rules state under which conditions is a transition possible.

The explicit expressions for the spherical harmonics for \(l = 1, 2 \) are given by

\[Y_{1,1} = -\frac{1}{2} \sqrt{\frac{3}{2\pi}} \frac{x + iy}{r} \quad Y_{1,0} = \frac{1}{2} \sqrt{\frac{3}{\pi}} \frac{z}{r} \]

(3)

\[Y_{2,2} = \frac{1}{4} \sqrt{\frac{15}{2\pi}} \frac{(x + iy)^2}{r^2} \quad Y_{2,1} = -\frac{1}{2} \sqrt{\frac{15}{2\pi}} \frac{(x + iy)z}{r^2} \quad Y_{2,0} = \frac{1}{4} \sqrt{\frac{5}{\pi}} \frac{2z^2 - x^2 - y^2}{r^2} \]

(4)

and \(Y_{l,-m} = (-1)^m Y_{l,m}^* \).