
CHAPTER 6

Energy and Its Conservation

Work: not always what you think

Energy of motion: kinetic energy

Energy of position: potential energy
Gravitational potential energy
The reference level
Mechanical energy and its conservation
Electric potential energy
Springs: elastic potential energy
Hooke’s law and the expression for the elastic

potential energy

Friction and the loss of mechanical energy

Internal energy and the law of conservation of energy

Work and energy revisited

Power: not what the power company sells

When you drive a car you have to stop from time to time to add fuel to the tank.
In a house or apartment a bill arrives each month from the electric company. And
all of us have to keep breathing and eating. In each case we use energy that is
never created or destroyed, only transformed from one kind to another.

The gasoline in the car makes it possible for the car to move, as some of its
internal (“chemical”) energy is changed to energy of motion (“kinetic” energy).
Electric currents heat the stove or the toaster, make the lamps light up, and
the fans and vacuum cleaner run. In each of these cases energy is transformed
at the generating station, usually from some kind of stored internal energy, or
from the kinetic energy of wind or water. It becomes “electric” energy that can
be transmitted through wires, and in turn transformed to the energy that we use
as heat or light or motion.The food we eat gives us the energy stored within it,
which is then transformed in our bodies to the energy that we need to exist, to
move, and to function.

RUTGERS U
NIV

ERSITY P
RESS



104 / Energy and Its Conservation

There is hardly a concept more pervasive than energy in all of science.The
food we eat is fuel that we count in energy units.We transform it to kinetic energy
when we move and to gravitational potential energy when we climb. Changes of
material, whether physical, as from ice to water, or chemical, as in the burning
of wood, are accompanied by changes of energy. We would not exist without
the energy radiated by the sun, which is liberated there by its nuclear reactions.
The state of each atom and molecule is characterized by its internal energy, that
is, by the motion of its components and by their distribution in space and the
resulting electric potential energy.

Our experience with the various kinds of energy brought us to the realization
that energy cannot be made or created, and that it does not disappear.This is the
law of conservation of energy. No exceptions to it have been found, and it has
become a guiding principle that plays an essential role in every part of science.

6.1 Work: not always what
you think

In ordinary language “work” can refer to a vari-
ety of activities, from shoveling snow and sawing
wood to writing and thinking. In physics its
meaning is more limited, but also more precise:
you are working when you exert a force on an
object and the object moves in the direction of
the force (or of a component of the force). You
may want to call it work just to hold a book or a
rock, even when it doesn’t move, but the physi-
cist’s definition wouldn’t include that. If the rock
doesn’t move, you’re not working.

If the rock does move, and there is a force
on it in the direction of the motion, we define
the work done on it by the force as equal to the
force on the rock times the distance that the rock
moves, or W = Fs.

EXAMPLE 1

F

s

What is the work done by the force F = 3 N?

Ans.:
If the force is 3 N, and the rock moves 4 m, the work
done on the rock by the force is (3 N) (4 m), or 12 Nm.

The unit Nm is also called the joule (J).

The force, F, (3 N) is in the same direction as the
distance, s, (4 m) through which the rock moves. The
work (W) done by this force is Fs, or 12 J.

This is so even though there are three other
forces on the rock. Two of them are vertical, the
weight of the rock (FER = Mg) and the upward force
on it by the table (FTR). There is no vertical acceler-
ation, and so these two forces add up to zero. Since
the rock does not move in the vertical direction, these
two forces do not do any work on the rock. There is
also the force of friction (f ), in the direction opposite
to the direction of the motion. However, we are asked
about the work done by only one force, the 3 N force,
and so we do not need to consider the work done by
any of the other forces.

F f

F
ER

F
TR

F
ER
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6.2 Energy of motion: kinetic energy / 105

It is not easy to think of a situation where
there is only a single force acting on an object
unless we make some assumptions that simplify
the situation. A freely falling rock is a good exam-
ple, but only if we assume that we can neglect the
air resistance. The weight, Mg = FER, is then the
only force that we need to consider.

As the rock falls a distance Δy, the work
done on it by the weight is MgΔy.

That the work is equal to the force times the
distance is the basic definition when the force is
constant and in the same direction as the motion.
We can expand this statement so that it also
works for other cases. If there are several forces
on the rock, all in the direction of the motion of
the rock, each one does work on it, equal to the
magnitude of the force times the distance. If the
directions are not the same, we can take care of
that too, and will do so later.

6.2 Energy of motion:
kinetic energy

The most basic kind of energy is energy of
motion, or kinetic energy. Let’s see how it is
related to the quantities that we know, to force
and acceleration, and to mass and speed.

Go back to our rock. Suppose that just a
single force acts on it. We already know that the
force will cause the rock to accelerate. Perhaps
it starts from rest, or it may already be moving.
The force will cause it to move faster, and after
some time it will have a new and higher speed.

If we know the force and the distance, can
we find out just how much faster the rock will
be moving? Yes, we can. We know Newton’s
second law of motion, and we can find the accel-
eration. Once we know the acceleration, we can
find how much faster the rock will be moving:

F

s

vv
0

Initial velocity: v0 = 0
Final velocity: v
F is the only force on the rock, and so F = Ma
Work done on the rock: Fs = Mas

Because the force is constant, the accelera-
tion is constant too, and we can use the third
relation for constant acceleration from Chapter
3, v2 = v2

0 + 2as. Since the block starts from rest,
v0 = 0, and v2 = 2as, or as = 1

2 v2. The work
done by the force, Fs, or Mas, is therefore equal
to 1

2 Mv2.
We know what happens, but we are going

to say it differently. This will open up a whole
new way of looking at the same situation. We say
that the work done on the rock changes its energy
of motion, which we call its kinetic energy. We
define the kinetic energy by saying that it is the
work done on the rock, starting from rest, to the
point where its speed is v. We see that this is equal
to 1

2 Mv2.
To visualize the energy changes we can

use bar charts, in which the height of each
bar represents an amount of energy or work
done.

W Kf=

W = Kf

The two bars have the same height, illustrat-
ing the relation that the work done on the rock
(W) equals the increase (from zero to Kf ) in the
kinetic energy.

If the rock starts out with some speed v0,
we can again use Chapter 3’s third relation for
constant acceleration, v2 = v2

0 + 2as, but this
time we have to include the term in v0 so
that the work done by the force is Fs = Mas =
1
2 Mv2 − 1

2 Mv2
0. We see that doing work on the

rock is a mechanism for changing its kinetic
energy.

We can write this as 1
2 Mv2

0 + Fs = 1
2 Mv2: the

initial kinetic energy of the rock (Ki = 1
2 Mv2

0)
plus the work done on it (W) is equal to the final
kinetic energy (Kf = 1

2 Mv2).
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W =
Ki

Kf

That Ki + W = Kf is always true when W is
the total work (which we can call WT) done on
an object. WT is the sum of the amounts of work
done by all of the forces on it. It is also the
work done by the net force, i.e., by the vector
sum of all of the forces acting on the object.

The statement that the total work done on
an object is equal to the increase in its kinetic
energy is so universal that it is given a special
name. It is called the work-energy theorem.

We have to remember that we are not talking
about any changes inside the rock or other object.
We are using the model in which the object acts
as a particle, in other words, as an object without
any internal structure. Only then does the work-
energy theorem apply.

EXAMPLE 2

A 0.2 kg hockey puck is at rest on horizontal fric-
tionless ice. It is then pushed with a steady horizontal
2.5-N force and moves 1.5 m.

(a) Set up a mathematical description that relates
the work to the kinetic energy. Make an energy
bar chart.

Determine how fast the puck is moving after
it has gone the 1.5 m.

(b) Repeat part (a) for the same situation, but with
the puck initially moving with a speed of 3 m/s
in the direction of the force.

Ans.:
(a) The work, W , done by the force, F, when the

puck moves a distance, s, is Fs, or (2.5 N)(1.5 m),
which is equal to 3.75 Nm or 3.75 J. Since
W = Kf , this is also equal to the final kinetic
energy, Kf .

You are, however, asked to find the veloc-
ity, vf , which is related to the kinetic energy by

Kf = 1
2 MV2

f , or vf =
√

2Kf
M , which is

√
(2)(3.75)

0.4 ,
or 4.33 m/s.

W Kf=

(b) This time we first have to find the initial kinetic
energy, Ki, which is ( 1

2 )(0.4)(9) = 1.8 J. W is still
3.75 J, so that Ki + W is 1.8 J + 3.75 J = 5.55 J.

This is Kf , so that vf =
√

2Kf
M =

√
(2)(5.55)

0.4 =
5.27 m/s.

W =

Ki

Kf

We could have kept each unit in the expres-
sion for vf before evaluating it. However,
because each of the quantities (energy and mass)
was expressed in the appropriate SI units (J and
kg), the result for vf is automatically in the cor-
rect SI unit (m/s). If energy and mass were not
in SI units, they would first have to be con-
verted. (Some other system of consistent units
would work also, but we will stick to the SI
system.)

Note also that the mathematical expressions
are in terms of work and energy. These are the
quantities related by the relevant physical law,
namely that the kinetic energy of the puck is
increased by the amount of work that is done on
it. It is only after we calculate the final kinetic
energy that we can find the final velocity. (We
cannot add the velocities!)

6.3 Energy of position: potential
energy

Gravitational potential energy

When we lift a rock from the floor to the table, we
give it energy. This energy depends on where the
rock is, so that we can call it energy of position.
The energy is stored. It has the “potential” to be
changed to kinetic energy if the rock falls back
down to the floor. That’s why it is called potential
energy.

We are talking about the system containing
both the rock and the earth. Take the rock in
your hand and lift it. Do it at constant speed so
that we don’t have to think about a change in its
kinetic energy. Your hand exerts a force and does
work on the system. The force exerted by your
hand, FHR (hand on rock), as the rock moves
with constant speed, is equal in magnitude and
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6.3 Energy of position: potential energy / 107

opposite in direction to the gravitational force
of the earth, the weight, FER (earth on rock),
of the rock. The work done by your hand cre-
ates potential energy (P). It is work done by
a force that is in the direction opposite to the
direction of the gravitational force, or against
the gravitational force. We call this poten-
tial energy gravitational potential energy. We
define the increase in the gravitational potential
energy as the work done against the gravitational
force.

For the system containing the earth and the
rock, the forces exerted by the earth on the rock
and by the rock on the earth are internal to the
system. The force of your hand is external to this
system. It acts to separate the earth and the rock,
and increases the gravitational potential energy
of the system.

As long as the only other object besides the
rock is the earth, there is not much likelihood of
confusion, and we may talk about the potential
energy “of the rock” while keeping in mind that
we are really talking about energy shared by the
rock and the earth.

The words the increase in the gravitational
potential energy and the work done against the
gravitational force mean the same thing. We can
use one or the other. In any one problem we can
use either the increase in the potential energy
or the work against the gravitational force, but
not both.

Your hand lifts the rock, increases its dis-
tance from the earth, and increases the potential
energy. Without the presence of the earth, the
gravitational potential energy would not change.
We see that the potential energy is a property of
both the rock and the earth. It is a property of
the system consisting of both.

How much potential energy did we give the
system as the rock moved up? Because the rock
moves with constant velocity, the upward force
of your hand, FHR, has the same magnitude as
the downward gravitational force, FER. The
work (W) done by FHR is the work done against
the gravitational force. If the rock goes up a dis-
tance y, the force FHR does an amount of work
equal to (FHR)(y).

The increase in the potential energy (ΔP)
of the rock is therefore FHRy, and since FHR

and FER = Mg have the same magnitude, it
is also equal to Mgy: W = ΔP = Mgy, ΔP =
Pf − Pi.

W = ΔP

So far we have talked only about a rock so near
to the earth that the gravitational force on it can
be considered to be constant. Later we will con-
sider the more general situation where objects are
so far from each other that the variation of the
gravitational force, as given by Newton’s law of
gravitation, has to be taken into account.

EXAMPLE 3

You do 40 J of work, lifting a rock 1.2 m at constant
velocity.

(a) Set up a mathematical description that relates
work and energy. Make an energy bar chart.

How much energy does the rock gain? What
kind of energy does it gain?

(b) Determine the mass of the rock.

Ans.:
(a) There is no change in kinetic energy. We will

neglect air resistance. Therefore the only energy
that is changed is the gravitational potential
energy: W = ΔP.

W ΔP=

The work done on the rock to lift it is 40 J,
and so the rock gains 40 J of potential energy.

(b) The work (W) done against the gravitational
force (Mg) is Mgy, where W = 40 J, y = 1.2 m,
and g is, as usual, 9.8 m/s2. M = W

gy =
40

(9.8)(1.2) = 3.40 kg.

Some problems can be solved by using either
the concept of force or the concept of energy.
But in general there are two great advantages of
using energy rather than force. One is that energy
is a scalar quantity, while force is a vector quan-
tity. The whole problem of directions and adding
vectors falls away when we use the concept of
energy. The second advantage is that with energy
we need to consider only the initial and final
energies. Except for work done on the system,
or other changes in its energy, we don’t need to
think about what happens in between. When we
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use forces, on the other hand, we have to be able
to follow every motion in detail: we have to know
the forces at every point and at every moment.

The reference level

The change in the potential energy depends on
the height, but we have not said anything about
where the height is measured from. As long as we
talk only about differences in potential energy,
the question doesn’t come up. When we want to
talk about the actual amount of potential energy,
we need to measure it from some reference level.

Because only differences in potential energy
matter, it makes no difference where we take
the reference level to be. It could be the floor, the
ceiling, sea level, or any other convenient height.
We are free to put it wherever it seems simplest.
Regardless of where we choose it to be, the dif-
ference in height, y1 − y2, and the difference in
the potential energy, ΔP, will be the same.

If the initial potential energy is Pi, and
work W is then done on the rock to lift it, the
final energy is given by Pi + W = Pf , or W =
Pf − Pi = ΔP. If we choose a different reference
level, Pi will be different, but so will Pf , and the
increase Pf − Pi = ΔP will remain the same. The
bar chart illustrates both of these relations.

W =

Pi

Pf ΔP

Mechanical energy and
its conservation

After lifting the rock let’s let it drop back, starting
from rest at the top. We can use different ways
to describe what happens. One is to consider the
system of the rock and the earth. Its total energy
remains constant. On the way down its potential
energy decreases as the rock speeds up and gains
kinetic energy.

Ki = 0, Pf = 0
Ki + Pi = Kf + Pf
Pi = Kf

Ki + +=Pi Kf Pf

We can also consider the system containing
only the rock. The gravitational force (Mg) is
now an external force. It does work on the rock
so that it speeds up and gains kinetic energy.

How much kinetic energy does it get? Let’s
go back to the description in terms of the force.
The definition of work tells us that on the way
down the work done on the rock is equal to
the force on the rock times the distance back
down. The magnitude of the force is Mg, the
distance is again y, and the amount of work
is therefore equal to Mgy. This is the amount
of kinetic energy that the rock gains on the
way down.

Now we have to be careful. Is the force Mg
the only force on the rock? Not quite. There is
also air resistance, and there may be other forces.
For now let’s assume that we can neglect them.
(We also neglected air resistance when the rock
was on the way up.) We will come back to this
question later to see the effect of air resistance.

For now, while we neglect air resistance, we
see that in the system of the rock and the earth
the potential energy that is lost as the rock falls
is equal to the kinetic energy that is gained. The
sum of the two energies remains constant while
the rock falls.

We give this sum a new name, mechanical
energy, and can then say that the mechanical
energy remains constant while the rock falls.

The earth and the rock interact via the grav-
itational interaction. The gravitational force is
internal to the system of the earth and the rock.
Within this system there is kinetic energy and
potential energy. As long as there is no force
from outside the system, the sum of the two is
constant.

As the rock falls, the kinetic energy of the
system increases (mostly of the rock, but to a
minute extent also of the earth) and the poten-
tial energy decreases. When the rock moves away
from the earth, the potential energy increases and
the kinetic energy decreases. The sum of the two,
the mechanical energy, remains constant. Other
objects or interactions are outside the system.
They give rise to forces that change the mechan-
ical energy of the system. These external forces
may be air resistance, or the force of your hand
as you separate the earth and the rock, i.e., as
you lift the rock. In the absence of any exter-
nal forces, the mechanical energy of the system
remains constant.
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6.3 Energy of position: potential energy / 109

This is our first encounter with the law of
conservation of energy. It is in a very restricted
form, because we are neglecting air resistance
and other forces. Only a single force, the gravi-
tational force, the weight, does work.

Under these circumstances, however, it
always holds: in the system containing only the
earth and another object, the weight of the object
is the only force that does work. It is an internal
force, and the mechanical energy of the system
remains constant.

Remember that the choice of what we call
the system is up to us. We can also look at the
system containing only the rock. For this system,
with the earth outside it, the gravitational force
is an external force. As long as we continue to
use the model where the rock is considered to be
a particle, i.e., without internal energy, the only
energy that it has is kinetic energy.

We will gradually remove all the restrictions
and introduce other kinds of energy. We will then
see the law of conservation of energy as one of
the most fundamental and general laws in all of
science.

We will talk about other kinds of potential
energy. We distinguish the one that we started
with by calling it gravitational potential energy,
but if there is not much chance that we will con-
fuse it with others, we will just call it potential
energy.

EXAMPLE 4

Δy

y
2
 = 3 m

y
1
 = 0

A rock has a mass, M, of 2 kg, and is lifted a
distance, y, of 3 m, at constant velocity.

(a) How much potential energy does it gain on the
way up? (From its initial amount, P1, to its final
amount, P2.)

(b) How much kinetic energy does it gain on the
way down, if it drops the 3 m, starting from rest?

(From K2 and P2 at the top, to K3 and P3 when
it is back at the bottom.)

(c) What is its speed when it gets back to the starting
point?

Ans.:
The system is that of the rock and the earth. As the
rock is lifted, work (W) is done on it by your hand.
The complete energy relation is W + P1 + K1 = P2 +
K2. We can choose the reference level so that P1 = 0.
The kinetic energy remains the same (K1 = K2), so
that we are left with W = P2.

W = P2

On the way down, P2 + K2 = P3 + K3. It starts
from rest (K2 = 0). It goes back to the point where
P3 = 0. That leave P2 = K3.

P2 = K3

The rock’s weight is Mg, or 19.6 N. On the way
up it gains potential energy Mgy, or 58.8 J. On the
way down it gains an amount of kinetic energy equal

to 58.8 J. Since this is equal to 1
2 Mv2

3, v3 =
√

2K3
M =

√
(2)(58.8)

2 = 7.67 m/s.

EXAMPLE 5

Go to the website phet.colorado.edu and open the
simulation Energy Skate Park. Check “potential
energy reference.” Drag the reference level to the low-
est point of the skater’s path. (The skater’s position
is indicated by the red dot below the skates.) Slow
down the motion as much as possible by using the
slider at the bottom. Click on “bar graph.”

(a) Observe what happens to the potential energy,
(P), the kinetic energy, (K), and the total (=
mechanical) energy, (E). How do K and P
compare when the skater is half-way down the
track? Three quarters of the way down? What
is the speed half-way down, compared to its
maximum value?

(b) Reset to remove the bar graph. Click on “energy
vs. position.” Check “potential” and uncheck
all others. (All units on the graph are SI units.)
Check “measuring tape” and use the tape to
measure the maximum height.
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Calculate the weight of the skater (in N).
Calculate his mass in kg. Are these results
reasonable?

(c) Look at K and E and compare to your results
in part (a).

Ans.:
(a) E is constant. P and K change form zero to E.

Their sum is constant and equal to E. At the top
K = 0 and P is at its maximum value, which is
equal to E. At the bottom P = 0 and K is equal
to E.

P is proportional to the height, h, above the
reference level (P = Mgh). Therefore, when the
skater is at half the maximum height the poten-
tial energy has half of its maximum value, and
so has K. When he is one-quarter of the way
from the bottom P is at 1

4 of its maximum and
K = 3

4 E.

Half-way down K = 1
2 Kmax, or 1

2 Mv2 =
(

1
2

)

(
1
2 Mv2

max

)
. v2 = 1

2 v2
max, or v = 1√

2
vmax.

(b) For a maximum height of 4.1 m and a maximum
potential energy (= Mgh) equal to about 3000 J,
the weight is P

h or 732 N, and the mass is P
gh or

75 kg. This is equivalent to 164 pounds, which
seems reasonable.

Electric potential energy

Just as the earth and all other objects attract each
other by the gravitational force, positive and neg-
ative charges attract each other by the electric
force. If we want to separate the charges, we
have to pull them apart with a force that acts
in a direction opposite to the electric force that
attracts them. The force that we exert does work
on the charges, and we can talk about electric
potential energy in close analogy to the way we
talked about gravitational potential energy.

The negative charge is attracted to the positive
charge, as described by Coulomb’s law. If we push
it from point 1 to point 2, doing work, W, it gains

potential energy: P1 +W = P2 or W = P2 − P1 =
ΔP.

W = ΔP

If we let it “fall back” from rest at point 2 to
point 1, it will lose potential energy (from P2 to P1)
and gain kinetic energy (from K2 = 0 to K1). The
sum of the kinetic and potential energies remains
constant, just as in the gravitational case, as long
as we neglect any forces except for the elec-
tric force between the positive and the negative
charge. K2 + P2 = K1 + P1 and K1 = P2 − P1 = ΔP.

P2 =
K1

P1

The electric force between two charges is
analogous to the gravitational force between two
masses. There is the added feature that while all
masses are treated equally by the gravitational
force, there are two kinds of charge. The elec-
tric force can be one of attraction or repulsion,
depending on the sign of the charges. Apart from
that, the gravitational force and the electric force,
as well as the gravitational potential energy and
the electric potential energy, are entirely analo-
gous to one another. The work done against the
electric force is equal to the increase in the electric
potential energy.

To find the amount of electric potential
energy that the negative charge gains as it is
pushed away from the positive charge is not so
easy. We can’t just say that the work done is the
electric force times the distance, because the force
becomes smaller as the negative charge moves
away. There is no single value for the force! It is
still possible to calculate the change in potential
energy, and we will do it later.

When we talked about gravitational poten-
tial energy we considered only situations at or
near the surface of the earth. Because all of the
points at the earth’s surface are approximately at
the same distance from the center of the earth we
could take the gravitational force on an object
to be constant. If the object moves to an earth
satellite, that might no longer be a good approx-
imation. And it certainly won’t be if it goes to the
moon.
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EXAMPLE 6

A single electron (Me = 9.11 × 10−31 kg) is released
from rest near a large positively charged surface. It
loses 6 × 10−18 J of electric potential energy after
moving 0.2 m.

(a) Set up a mathematical description relating the
various energies.

(b) Determine the electron’s velocity after it has
moved the 0.2 m.

Ans.:
(a)

K1 + =P1 K2 P2+ P1 + K1 = P2 + K2
K1 = 0, P2 = 0
P1 = K2

(b) The only energies in this problem are the elec-
tric potential energy and the kinetic energy. (We
will assume that there is no change in the grav-
itational potential energy, and that there are no
forces other than the electric force.)

As the electron loses potential energy, it gains
kinetic energy.

P1 + K1 = P2 + K2, where K1 = 0. We can
choose our reference level so that P2 = 0. Then
P1 = 6 × 10−18 J, P1 = K2, and K2 = 6 × 10−18 J.

v2 =
√

2K2
M =

√
(2)(6×10−18)

9×10−31 = 3.63 × 106 m/s,
and it moves toward the plane.

Springs: elastic potential energy

Here is another potential energy. Suppose a
spring is held stationary at one end and you pull
on the other. The spring pulls on your hand in the
opposite direction. The work that you do against
the elastic force of the spring is equal to the
increase in the spring’s elastic potential energy.

If you let go, the potential energy that was
stored in the spring is converted into kinetic

energy. If we ignore air resistance, and also any
friction in the spring, so that we leave only the
elastic force that the spring exerts, the sum of
the kinetic and potential energies will again be
constant. As the potential energy decreases, the
kinetic energy increases.

Like the electric force, the elastic force is not
constant as the object on which it acts moves.
As the spring is stretched, more and more force
is required to stretch it further. We can there-
fore again not simply say that the work done by
the elastic force is equal to the force times the
distance.

Here is a spring that starts unstretched. We
will use the subscript “1” for the energies there,
and take the elastic potential energy P1 to be zero.
Since it is not moving, K1 is also zero.

It is then stretched by the force, F, until it has
a potential energy P2, with K2 still zero. When
it is released, the potential energy is changed to
kinetic energy. When it gets to the original start-
ing point, the potential energy is again zero, and
all of the potential energy has changed to kinetic
energy (K3).

W = P2 P2 = K3

P1 = 0 K2 = 0 P3 = 0
P1 + W = P2
K2 + P2 = K3 + P3
P2 = K3

EXAMPLE 7

A ball whose mass is 0.02 kg is shot horizontally from
a spring gun. Initially the spring is compressed and
stores 10 J of energy.

(a) Set up a mathematical description that relates
the energies.

(b) Determine how fast the ball is moving just after
it has been fired from the gun.

Ans.:
Just after the ball leaves the gun, it has not yet moved
vertically. Hence there is no change in the gravi-
tational potential energy. We neglect any frictional
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losses. The only changes are then in the elastic poten-
tial energy (P), which is lost by the spring (10 J), and
the kinetic energy, which is gained by the ball.

K1 + =P1 K2 P2

K1 + P1 = K2 + P2, K1 = 0, P2 = 0, and P1 = K2

K2 = 10 J = 1
2 Mv2

2

v2 =
√

(2)(10)
0.02 = 31.6 m/s

Hooke’s law and the expression
for the elastic potential energy

Experiments show that for most springs the force
that a spring exerts is, to a good approxima-
tion, proportional to the displacement from the
equilibrium position. This is so until the spring
is stretched so much (beyond the “elastic limit”)
that it distorts permanently and no longer returns
to its original shape.

For a force smaller than that of the elastic
limit, the force exerted by the spring is Fs = −kx,
where k is a proportionality constant that is char-
acteristic for the particular spring, and is called
the spring constant. The minus sign shows that
the force that the spring exerts is in a direction
opposite to the displacement from the equilib-
rium configuration. The relation Fs = −kx is
called Hooke’s law.

How much work has to be done on the
spring to stretch it from its equilibrium posi-
tion (x = 0) to some new position, where the
displacement is x?

First we will shift from the force Fs(= − kx)
that the spring exerts to the external force with
which the spring is being pulled. We will call this
force F. It is equal in magnitude and in a direction
opposite to Fs, and so is equal to kx. The graph
shows the straight line F(x).

If we want to find the work that is done to
stretch the spring, we can’t just multiply “the
force” by the displacement, as we did for con-
stant forces, because now the force changes. In
the next figure we have divided the area below the
line into a number of vertical strips, six to start
with. For each strip the force does not vary as
much, and the work done by F is approximately

equal to the area of the strip. For example, the
area of the crosshatched strip is (F3)(x4 − x3).

We can repeat this procedure for the other
intervals. The work during all six intervals is then
the area of all six strips. This is a little less, but
close to the triangular area under the line.

If we had used more than six intervals, the
area of the strips would be closer to the area
under the line, and it becomes equal to it in the
limit as the strips become narrower and their
number becomes larger. We can see that the work
done on the spring is, in fact, equal to the tri-
angular area under the line, which is equal to( 1

2

)
(kx)(x) or 1

2 kx2. This is the work done against
the spring’s force, and is therefore equal to the
elastic potential energy that the spring gains
when it is stretched from x = 0 by the amount x.

The same method can be used for other
forces that are not constant. On a graph of F
against x, the work done by F is again equal to
the area under the curve.

For the special case where F and x are related
linearly, in other words, when the graph of F
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against x is a straight line (as in the case of the
spring), the average force is equal to half of the
final force. For the stretching of the spring from
x = 0 to x, this is 1

2 kx, and the work done is
( 1

2 kx)(x), or 1
2 kx2, as before. But when the graph

of F against x is not a straight line, the average
force is not half of the final force. The work is
then still the area under the curve of F against x,
but it is no longer 1

2 kx2.

Go to the PhET website (http://phet.colorado.
edu) and open the simulation Masses and Springs.

Move the friction slider to the far left so that
there is no friction. Hang one of the masses on one
of the springs and watch it oscillate up and down.
Click on “Show energy...” and watch the changes
in the various energies: kinetic, gravitational poten-
tial, and elastic potential. Where is each energy at
its maximum and at its minimum? Where is the
kinetic energy zero? Note that you can change the
reference level for the potential energy.

Explore the changes in the motion with the
amount of mass and the softness of the spring.
(Note that you can slow the motion down.)

As long as the force follows Hooke’s law (and
this is programmed into the simulation) the mass
moves with simple harmonic motion, i.e., propor-
tional to x = sin ωt. Here ω = 2π

T , where T, the
period, is the time for one complete oscillation.
(Add T to t to see that x comes back to the same
value after the time T.)

Here is how we can see the relation between
Hooke’s law and simple harmonic motion. Write
Hooke’s law as a = − k

m x. Remember that a is the
slope of the slope (the second derivative) of x.
Is there a function that has the property that the
slope of its slope is the negative of the function
itself? Yes! It is the sine or the cosine or some
combination of the two.

We can make the relation quantitative. Let x =
A sin ωt, which is the same as x = Asin 2πt

T . The
slope of the slope of this function can be shown
to be −ω2x. Comparing this relation to Hooke’s law

shows that k
m = ω2, which leads to T = 2π

√
m
k .

6.4 Friction and the loss of
mechanical energy

In each of the three cases (gravitational poten-
tial energy, electrical potential energy, and

elastic potential energy) the term potential energy
implies that energy is stored, and that it can
be retrieved and converted into an equivalent
amount of kinetic energy. Each of the kinds
of potential energy changes when the posi-
tion changes. The gravitational potential energy
changes when the rock or other object moves
closer or farther from the earth. The elec-
tric potential energy changes when the charges
move closer to each other or farther apart. The
spring’s elastic potential energy changes when it
is stretched or unstretched. As long as there are
no forces other than the gravitational force, the
electric force, and the elastic force, the sum of
the kinetic energy and the various potential ener-
gies is constant, and an object that comes back
to a particular position will have the same kinetic
energy there that it had at that position at an ear-
lier time. A bouncing ball, for instance, will come
back to the same height.

But wait a minute. That doesn’t really hap-
pen! If I drop a ball, it won’t bounce back to the
same height. Each time it bounces, it will come
back, but not to the same height as before. After
some time it will stop bouncing and just sit there.

The ball loses potential energy on the way
down, but the kinetic energy that it gains is
not the same, because the force of air resistance
slows it down. Air resistance causes some of the
mechanical energy to be lost. Some mechanical
energy is also lost when the ball is distorted when
it comes in contact with the floor, and when some
sound is produced as the ball bounces.

When we said that the bouncing ball will
come back to the same height after it bounces,
we assumed that we can neglect the effects of all
forces on the ball except for the one that the earth
exerts on it, i.e., its weight. For a real ball this
is clearly not a good assumption. We can not
simply talk about the ball as if it were a particle.
Unlike a particle, it takes up space and encoun-
ters air resistance. It gets squeezed and deformed
as it bounces. It has an internal constitution that
we have to consider.

When the ball finally stops, some of its
potential energy has been lost but there is no
kinetic energy to take its place. The sum of the
two, the mechanical energy, is no longer the
same. Some of it has been transformed to another
kind of energy. It has been dissipated. We will use
the symbol Q for the mechanical energy that has
been dissipated.
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What spoils the earlier story is that there
are forces that we have neglected. One of them
is air resistance. It prevents us from getting
all the potential energy back and keeping the
mechanical energy constant.

Air resistance slows the ball down whether
it is on the way up or on the way down. This
is very different from what the weight does: the
weight speeds the ball up on the way down and
slows it down on the way up.

Some mechanical energy has been used up to
do work against air resistance. You can’t get this
part of the mechanical energy back. It is gone. It
has been dissipated. That’s why air resistance is
called a dissipative force.

EXAMPLE 8

A ball whose mass is 0.5 kg is dropped from rest at a
height of 2 m above the floor. It bounces and comes
back to a height of 1.5 m before dropping again. How
much mechanical energy has been dissipated by the
time it gets to 1.5 m after the first bounce?

Ans.:
P1 = P2 + Q

Q = P2 − P1 = Mg(y2 − y1) = MgΔy

Use the floor as the reference level and measure
P from there. At the starting point (point 1) P1 =
Mgy1 = (0.5)(9.8)(2) = 9.8 J.

After the bounce, at 1.5 m (point 2), P2 =
Mgy2 = (0.5)(9.8)(1.5) = 7.35 J.

The kinetic energy is zero at both points. Hence
the mechanical energy that has been dissipated is P2 −
P1, or 2.45 J.

The amount of mechanical energy MgΔy =
(0.5)(9.8)(0.5) J = 2.45 J is lost to the system. It is
dissipated.

=

Push a rock along a table so that it moves
with constant velocity. You apply a force. The
rock moves. You do work. There is another
force, and it works against you. That is the force

F
v is constant

f
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of friction. It works against you regardless of
whether you pull or push. If you turn around
and push the rock back, the force of friction also
turns around, and still opposes the force with
which you push the rock.

The work that you do does not increase
the rock’s energy. It gains neither kinetic energy
nor potential energy. Both P and K remain
constant.

W =
K1

Q

K2

If there were no friction, the block would
accelerate. The work done on it would result in
increased kinetic energy. But for a large-scale,
macroscopic object, one that you can see, there
is always some friction. The increase in the rock’s
kinetic energy is always less than the work that
you do as you push the block.

Go to the PhET website and open the simulation
Masses and Springs.

Let there be some friction, and explore the
various energies, this time including the dissipated
energy, here called thermal energy.

EXAMPLE 9

You push a block 0.8 m along a horizontal table
with a force of 2 N. The block moves with constant
velocity.

(a) Set up a mathematical description that relates
the energies.

(b) Determine how much mechanical energy is dis-
sipated.

Ans.:
(a) K1 = K2, P1 = P2, and W = Q.

(b) W = Fs = (2 N)(0.8 m) = 1.6 J.
This is the amount of mechanical energy that is

dissipated.

W =

K1

Q

K2

In the real, large-scale (“macroscopic”)
world there are always friction, air resistance, or
other dissipative forces. The ball does not keep
bouncing. The mechanical energy does not stay
constant.

It was a revolutionary discovery when it
was realized that when the mechanical energy
disappears, something else appears, namely an
equivalent amount of another kind of energy,
which we have not yet considered.

As the block slides along the table, its tem-
perature increases. That’s a sign that its internal
energy increases. Some of the energy is trans-
ferred to the table and the air, and their tem-
perature increases, showing that their internal
energy also increases. Mechanical energy is lost,
but internal energy is gained. The total energy
remains constant. It is conserved.

There are two great insights that led to our
understanding of the process that accompanies
the decrease of mechanical energy. The first is
that it was shown experimentally that a definite
amount of internal energy is produced each time
a definite amount of mechanical energy is lost.

The second is that on the microscopic level,
that of atoms and molecules, mechanical energy
doesn’t disappear at all. What we observe as
heating and an increase in internal energy on the
macroscopic or large-scale level is, in fact, sim-
ple to understand on the microscopic level. The
microscopic particles, the atoms and molecules
that make up a macroscopic object, are all in
motion, randomly, and at all times, each with
its own kinetic and potential energy. A change in
the total internal energy is actually a change in the
kinetic and potential energies of these particles.

In a gas the atoms or molecules move
freely, and the internal energy is primarily kinetic
energy. In a solid they vibrate about their equilib-
rium positions, and the internal energy is kinetic
and potential in roughly equal parts.

We use the term internal energy (U) as the
macroscopic quantity that represents the sum
of the microscopic kinetic and potential energies
of the particles that make up the macroscopic
object. One way in which the internal energy can
change is when the particles speed up, as they
do when the temperature increases. It can also
change in other ways, for example, when it is
squeezed, or when there is a phase change such
as that from ice to water. In these two cases the
microscopic potential energy changes.
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The internal kinetic energy is that of motion
of the atoms and molecules in all posssible direc-
tions, randomly. This is very different from the
motion of an object as a whole, where the atoms
move together, all in the same direction. The
schematic diagram on the left shows a number of
molecules moving randomly. The diagram on the
right shows an additional velocity, v0, for each
molecule, representing a movement of the whole
piece of material with this velocity. (In reality the
velocities of the individual molecules are gener-
ally much larger than the velocity of the whole
piece.)

We use the word heat or heat energy only
for energy that is transferred from one object or
system to another. A material does not contain
a certain amount of heat, as if heat were a kind of
substance. Heating is a process by which energy
can be transferred from one piece of material to
another.

In this sense heat is similar to work. Work
is not contained in an object. It also represents
a process by which energy is transferred from
one object to another. There is, however, a pro-
found difference between work and heat. Work
can increase mechanical energy, i.e., potential
energy and kinetic energy, and it can also change
the internal energy.

On the other hand, when an object is heated,
its internal energy increases, but there are severe
limits on how much of the energy can be changed
to mechanical energy. We will come back to this
distinction later when we discuss the second law
of thermodynamics.

EXAMPLE 10

The typical random speed of helium atoms at room
temperature is about va = 1300 m/s.

(a) What is the ratio of the internal Kinetic energy,
U, of a mole of helium at room temperature to
the kinetic energy, K, of the same amount of
gas in a balloon moving up at the rate of vb =
1.3 m/s?

Ans.:
For N atoms U = (N)( 1

2 mv2
a ) and K = (N)( 1

2 mv2
b).

The ratio U
K is equal to ( va

vb
)2 = 106.

The internal energy of the gas is about a million
times as large as the kinetic energy of the balloon!

6.5 Internal energy and the law
of conservation of energy

At first it doesn’t seem unreasonable to think of
heat as some kind of substance, a fluid that can
flow between objects. After all, when a hot body
and a cold body are brought together, we say
colloquially that heat “flows” from one to the
other, until they are at the same temperature. It
used to be thought that the heat generated by
rubbing two bodies together somehow resulted
from the squeezing out of this substance.

The crucial experiments that showed that
no such substance exists were done by Benjamin
Thompson (1753–1814), one of the strangest
figures in the history of science. He was born in
Massachusetts, but became a spy for the British,
and then fled to England. He was knighted by
King George III, and later was in the employ of
the Elector of Bavaria, who made him a gen-
eral and a count of the Holy Roman Empire. He
became known as Count Rumford, choosing the
name of a village near where he was born.

Benjamin Thompson, Count Rumford.
Courtesy of MIT Press.

In 1798 he was in charge of the making
of cannons. The drilling process is accompa-
nied by a very large amount of heating. He first
tried to measure the weight of the elusive sub-
stance, (termed “caloric”) that was supposed
to represent heat, and did not find any. Even
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more interestingly, he showed that there seemed
to be no limit to the amount of heating that
could be produced. He concluded that heat had
to be something quite different from a material
substance.

Detailed quantitative experiments were later
made by James Prescott Joule (1818–1889), who
showed that for a given amount of work done,
a definite amount of internal energy (often collo-
quially called heat) is generated. He stirred water
in a container with a paddle wheel. The work was
done and measured by a weight attached to the
paddle wheel. The internal energy that was pro-
duced was determined by measuring the amount
of water and the rise of its temperature. Look for
“Joule apparatus” on the internet.

James Prescott Joule.

The work done is equal to Mgy, where Mg is
the weight and y is the vertical distance through
which it moves. In our modern SI units, with
M in kg, Mg in newtons, and y in meters, the
work is measured in units that we now call
joules. Heat units were developed independently,
at a time when their connection to energy was
unknown. The calorie is the amount of energy
that raises the temperature of 1 gram of water by
one degree Celsius. Joule’s experiments, in 1847
and later, led to the number of joules equiva-
lent to one calorie, close to the modern value of
4.186 J/cal.

A quite different experiment had already
been done in 1807 by Joseph Louis Gay-Lussac.
He showed that a gas that was allowed to expand
into a container while pushing a piston would
cool, while no such temperature change occurred
if the gas did not do any work during the
expansion.

These experiments were crucial for the real-
ization that mechanical energy and internal

energy represent different forms of the same kind
of quantity and can be transformed from one
form to the other. They led to the establishment
and acceptance of the law of conservation of
energy.

In its most succinct form the law says that
in an isolated system the total energy is constant.
In other words, different kinds of energy can be
converted from one to the other, but without any
change, by creation or disappearance, of the total
amount of energy.

Alternatively, we can count the amount of
energy input to a system and say that the system’s
energy is increased by the net work done on it,
and, in addition, by the net amount of heating
that is done on it.

Initially the law of conservation of energy
applied only to heat and mechanical energy.
Other forms of energy were introduced later,
especially electromagnetic energy, and the law
was generalized to include them. In 1905, as the
result of the special theory of relativity, it was
seen that the mass of an object could also be
transformed to energy, and that the law of con-
servation of energy needed to be generalized to
include this fact. With the inclusion of all forms
of energy, as well as mass, it continues to be a
cornerstone of modern science.

EXAMPLE 11

Go to the website phet.colorado.edu and open the
simulation Energy Skate Park. Check “potential
energy reference.” Drag the reference level to the low-
est point of the skater’s path. Slow down the motion
as much as possible by using the slider at the bottom.
Click on “bar graph.” Click on “track friction.” Put
the slider marked “coefficient of friction” at a point
two spaces from the left end.

“Pause,” put the skater at a point near the top
of the track, and “Resume.”

What happens to K, P, to the internal (= ther-
mal) energy, U, and to the total energy (E)? How
is the mechanical energy related to the total energy
at the start? What is it when the skater has come
to rest?

Ans.:
The total energy, E, is still constant. The mechanical
energy is still P + K, but it is no longer equal to the
total energy because it is gradually being transformed
to thermal energy, i.e., to the internal energy of the
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skater, the track, and the air. At the start the mechan-
ical energy is the total energy. At the end it is zero and
all of it has been transformed to thermal energy.

EXAMPLE 12

How much potential energy does a person whose
mass is 75 kg gain as he or she climbs the Empire State
Building (h = 443.2 m)? How many food calories are
equivalent to this amount?

Ans.:
ΔP = Mgh = (75)(9.8)(443.2) = 3.26 × 105 J

1 cal = 4.186 J, and so this is equivalent to
7.79 × 104 cal. However, a food calorie, as listed on
a cereal box, is equal to 1000 cal or a kilocalorie. We
will write it as a Calorie with a capital C, i.e., 1 kcal =
1 Cal. The answer is therefore 77.9 kcal or 77.9 Cal.

This would be the number of food calories used
up in climbing to the top of the Empire State Building
if the process were 100% efficient. The actual effi-
ciency of the human body ranges approximately from
3% to 20%, and so you would need at least 400 Cal.

The human body is a complicated engine.The food
we eat combines with the oxygen we breathe
to liberate the energy that we use. This energy
maintains the body’s temperature and is, in part,
converted to mechanical energy when we move.
Excess food leads to stored material and we gain
weight. Excess exercise draws on material that
contains stored energy.

The quiescent body, as it lies motionless or
sleeping, uses energy at a rate called the basal
metabolic rate (BMR).The BMR can be measured,
for example, by measuring the amount of oxy-
gen that is breathed in and the amount of carbon
dioxide that is breathed out in a given time.

You can estimate your BMR crudely by multi-
plying your body weight in pounds by 10 to get
the BMR in kcal/day. A better approximation is
the Harris–Benedict equation, which comes in two
versions: one for males: 66 + 13.7W + 5H − 6.8A,
and one for females: 655 + 9.6W + 1.85H − 4.7A,
where W is the mass in kg, H is the height in cm,
and A is the age in years.

Estimates of the energy used in a variety
of activities can be found in many publications.
(For example, Exercise and Weight Control, The
President’s Council on Physical Fitness and Sports,
http://www.fitness.gov, Essentials of Exercise

Physiology, W. D. McArdle, F. I. Katch, and V. L.
Katch, Lea and Febiger, Philadelphia, 1994). The
numbers are often given to three significant fig-
ures, but they depend on many factors, both exter-
nal and internal to the body, and are necessarily
quite approximate.

To a reasonable approximation, away from
rest and from extremes of stress, the energy used
in level walking, running, swimming, and bicycling
is constant for a given distance. (At twice the
speed you then use the same energy in half the
time.)The values are proportional to the weight. (If
you weigh 10% less, you use 10% less energy as
you move.)

Here are numbers for the energy in kcal used
per mile, averaged from several sources: (Remem-
ber that these are rough guides, good to perhaps
±15%.)

walking: 85
running: 110
swimming: 400
bicycling: 40
You can see that it takes quite a while to use

up the number of Calories represented by a candy
bar (150 to 250 and more), or by a glass of orange
juice (100).

6.6 Work and energy revisited

Let’s look at our definition of work again to see
how it can be used when the force and the dis-
placement are not in the same direction. In that
case we use only the part of the force that is in
the direction of the displacement. This is the only
part of the force that does work. We call that part
the component of the force in the direction of the
displacement. If the angle between the force (F)
and the displacement (x) is θ, that component

(the x component) is F cos θ, and the work done
by the force is Fx cos θ.
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The figure shows the force, F, and its x
component, Fx. It also shows the y component,
Fy. Since cos θ = Fx / F and sin θ = Fy / F, the x
component is F cos θ and the y component is
F sin θ.

If F and x are at right angles, so that θ =
90o and cos θ = 0, the component of the force
in the direction of x is zero, and the force does
no work.

EXAMPLE 13

F

3 m

You move a block across a horizontal frictionless
surface by pulling with a 4-N force on a rope that
is attached to it at an angle of 30◦ with the horizon-
tal. How much work have you done when the block
has moved 3 m?

Ans.:
Work is done only by the component of the force that
is in the direction of the motion. This component, Fx,
is (4)( cos 30◦) N, or 3.46 N. W = Fxs = (3.46)(3) =
10.39 Nm = 10.39 J.

EXAMPLE 14

The moon travels around the earth at a steady speed
in an orbit that is close to being circular. Use the
approximation that the path is exactly circular and
neglect the influence of the sun and of any other
astronomical objects.

What is the nature of the forces that act on the
moon? Give an expression for its acceleration. Is any
work done on it? How do its kinetic and potential
energies change?

Ans.:
The only force on the moon is the gravitational attrac-
tion by the earth, Fem, and it is at right angles to the
path. No work is done, the kinetic and potential ener-
gies each remain constant, and the moon’s motion
continues. The dissipative forces are so minute that
the assumption of constant mechanical energy is
extremely close.

If the moon moves in a circle, there must be an
acceleration toward the center (the centripetal accel-
eration) and it has to be equal to v2

r . If it were
bigger or smaller, the moon would not continue to
move in a circular path. The net force that gives
rise to the acceleration is toward the center, and
its magnitude must be equal to Mv2

r . This is not an
additional force. The gravitational force is the only
force.

EXAMPLE 15

A pendulum consists of a string suspended at one end,
with a ball swinging back and forth at the other end. It
starts from rest at point 1, where it has only potential
energy, P1. Measure the potential energy from the
level of its lowest position (point 2), so that P2 = 0,
and it has only kinetic energy there.

Describe the forces on the ball, the work that
they do, and the energy changes as the pendulum
moves back and forth. Make a bar chart at different
points along the path of the pendulum.

Ans.:
There are two forces on the ball. One is the force
along the string, called the tension. The motion of
the ball is in a circle, with the string as its radius. The
circular path is at right angles to the radius. Since
the tension is along the radius, it is at right angles to
the path, and so does no work.

The second force is the weight. It acts straight
down. It is not at right angles to the path (except at
one point—do you see where?).

Consider the system of the earth and the pendu-
lum. As the pendulum swings downward, the kinetic
energy increases and the potential energy decreases.
The pendulum then swings upward, the potential
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energy increases, and the kinetic energy decreases
until it becomes zero. The pendulum comes back, and
continues to swing back and forth.

There is also air resistance, and friction at the
place where the string is suspended. These are the
dissipative forces. If we neglect them there are no dis-
sipative forces and the mechanical energy (the sum of
the kinetic and potential energies) remains constant.
The pendulum comes back to the same height, with
the same potential energy at the top of each swing,
and back to the same speed, and the same kinetic
energy at the bottom of each swing. It continues
forever.

Of course this is not what happens for any real
pendulum. The dissipative forces of air resistance
and friction cause the mechanical energy gradually
to diminish, and the pendulum eventually comes
to rest.

If we neglect friction and air resistance, the
mechanical energy remains the same. It is conserved.

Go to the PhET website (http://phet.colorado.edu)
and open the simulation Pendulum Lab.

Put the friction slider to the left so that there
is no friction. Check to show velocity and acceler-
ation. Set the pendulum into oscillation and watch
the two vectors. Slow the motion down to see
what happens more clearly. Where is the velocity
zero? What is the angle between it and the string
of the pendulum? Where is the acceleration tan-
gential to the motion? Where is it perpendicular to
the motion and along the pendulum string? Follow
what happens to the component of the accel-
eration parallel to the motion and perpendicular
to it.

Click on “Show energy.” Follow the kinetic
energy, the potential energy, and the total energy.
Where is each at its maximum and where are they
zero? (Don’t let the energy get so large that the
bar graph no longer follows it.)

Explore the effect of changing the length and
the mass of the pendulum, adding friction, and
going to the moon and to other planets.

EXAMPLE 16

A pendulum starts from rest at the height y1,
30 cm above its lowest point, where the height is y2.
What is the maximum speed of the pendulum bob as
it swings?

y
11

2

Ans.:
The maximum speed is reached at the lowest point.
We will assume that the only forces that we need to
consider are the tension of the string and the weight
of the pendulum bob. Since the tension is at all times
perpendicular to the path of the pendulum bob, it
does no work and does not change the mechanical
energy. In the system that contains the pendulum bob
and the earth, the mechanical energy is in part the
kinetic energy and in part the potential energy of the
pendulum bob.

Take the reference level at the lowest point, so
that y2 = 0. The potential energy at that point is then
P2 = 0 and P1 = Mgy1, where y1 = 0.3 m. Since the
pendulum is at rest at point 1, K1 = 0.

Mechanical energy is conserved, so that P1 +
K1 = P2 + K2, which here reduces to P1 = K2, or
Mgy1 = 1

2 Mv2
2 or v2 = √

2gy1 = 2.42 m/s.

P
1

K
2

=

Mgy
1

=

EXAMPLE 17

A baseball moves freely through the air, in projectile
motion. Describe the motion, the forces on the ball,
and the changes in energy as it flies through the air
from the time just after it leaves the bat to the time
just before it returns to the ground. Make a bar chart.
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Neglect air resistance. Draw graphs that show the
horizontal and vertical components of the velocity at
various points along the path of the ball. Also draw a
graph that shows the potential, kinetic, and mechan-
ical energies as a function of the horizontal distance
along the path.

Ans.:
Once the ball has left the bat the only force

on it is the force exerted on it by the earth, i.e., its
weight, vertically downward. There is also air resis-
tance, but we will neglect it. This may or may not
be a good approximation, but if it is, the only force
that does work is the weight, and mechanical energy
is conserved.

As long as we neglect all dissipative forces, and
the only force is the weight, there is no horizontal
force and no horizontal acceleration, and so the
horizontal velocity, vx, remains constant.

Taking “up” as positive, the vertical accelera-
tion is −g, and v2

y = v2
y0 − 2gy.

Take the reference level at the starting point
(point 1), so that P1 = 0. K1 = 1

2 Mv2
0 = 1

2 M(v2
x +

v2
y0). These are also the values when the projectile

returns to the same height at point 4.
At the highest point (point 3) vy = 0 and v =

vx, K3 = 1
2 Mv2

x, and P2 = Mgy2. At intermedi-
ate points there are intermediate values for vy, K,
and P.

The figure shows graphs of P, K, and the
mechanical energy, EM, which is equal to P + K:

Since P = Mgy, a graph of P against x will look
just like the graph of y against x. As long as we neglect
all dissipative forces, EM remains constant. K is the
difference between EM and P.

EXAMPLE 18

A stone with mass 0.2 kg is thrown at an angle to
the horizontal, with an initial velocity whose horizon-
tal component is 5 m/s and whose vertical component
is 3 m/s.

Neglect all dissipative forces. Use the starting
point as a reference level for the height and the
potential energy.

(a) What is the initial kinetic energy, K1?

(b) What is the kinetic energy, K4, at the point
where the rock comes back to the height where
it started?

(c) What is the kinetic energy, K3, at the highest
point?

(d) What is the potential energy, P3, at the highest
point?

(e) At point 2 the rock has reached half of its maxi-
mum height. What are the kinetic and potential
energies at this point?

(f) What are the height and the horizontal and ver-
tical components of the velocity at the half-way
point?
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Ans.:
(a) The initial velocity v0, has an x component

vx and a y component vy0. The magnitude v0 is√
v2

x + v2
y0 and the initial kinetic energy is 1

2 Mv2
0

or 1
2 M(v2

x + v2
y0). This is equal to ( 1

2 )(0.2)(25 +
9) = 3.4 J.

(b) Since we are neglecting all dissipative forces, the
mechanical energy is conserved. The height at
the starting and ending points is the same, and
so is the potential energy. The kinetic energy is
therefore again 3.4 J.

(c) At the highest point the vertical component
of the velocity is zero. In the absence of any
horizontal forces the acceleration has no hori-
zontal component, and the horizontal compo-
nent of the velocity remains constant, at 5 m/s.
The kinetic energy at that point is therefore
( 1

2 )(0.2)(25) = 2.5 J.

(d) Let the potential energy be zero at the starting
point. P1 = 0, K1 = 3.4 J, so that the mechani-
cal energy is 3.4 J. In the absence of dissipative
forces the mechanical energy is conserved and
remains constant at this value. The potential
energy at the highest point is therefore 3.4 − 2.5,
or 0.9 J.

(e) At a point half-way to the highest point, the
height and the potential energy are half of what
they are at the highest point. P2 = 0.45 J. The
mechanical energy is still 3.4 J, so that the kinetic
energy at this point is 2.95 J.

(f) P2 = Mgy2, so that y2 = P2
Mg = 0.45

(0.2)(9.8) = 0.23 m.

vx remains constant at 5 m/s.
K2 = 2.95 J = ( 1

2 )(0.2)(52 + v2
y ), so that 52 +

v2
y = 29.5. Hence v2

y = 4.5, and vy = 2.12 m/s.

EXAMPLE 19

A cart rolls along a track as in the figure, start-
ing from rest at point 1 at the top. Neglect friction
and other dissipative forces and neglect any internal
motion in the cart. There is no engine, and we will
neglect any complication from the fact that the wheels
are turning and therefore have rotational kinetic
energy.

Draw energy bar charts and write mathematical
descriptions for the total energy at point 1, point 2 in
the middle, and point 3 at the end.

Ans.:
We can use the system containing the cart and the
earth. The force of the track on the cart consists of
two components: one is the component perpendic-
ular (or normal) to the track, which does no work.
The other is the component parallel to the track. This
is the force of friction. We are assuming it to be
zero.

With our assumptions the sum of the potential
energy (P) and the kinetic energy (K) (of the system
containing the cart, the track, and the earth) remains
constant. We can look at any two points along the
path of the cart, characterized by subscripts 1 and 2
at a difference in height y1 − y2, and write P1 + K1 =
P2 + K2, just as in the previous examples.

K1

P1 =
K2

P2

Because K1 = 1
2 Mv2

1, K2 = 1
2 Mv2

2, and P1 −
P2 = Mg(y1 − y2), we can also write

Mgy1 + 1
2 Mv2

1 = Mgy2 + 1
2 Mv2

2

There are several interesting aspects of this rela-
tion. First, the mass, M, appears in each term, and can
be cancelled. This shows that the relation between
the heights and the speeds is the same, regardless
of the value of the mass, just as was true for the
pendulum.

Second, the vertical distance appears only as
y1 − y2, the difference in the height of the two points.
As before, changing the reference level changes y1 and
y2, P1 and P2, as well as the mechanical energy at
both points, but the differences, y2 − y1 and P2 − P1,
remain the same. The mechanical energy is different,
but the kinetic energies and the speeds at any point
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remain the same. That’s why we say that it is only
differences in the potential energies that matter, and
not their values.

Finally, the path of the car as it moves between
the two points does not affect the result. As long as
we stay within our self-imposed limitation that the
only force that does work is the gravitational force,
we don’t have to know anything about what happens
between points 1 and 2. Whatever the path, the sum
of the kinetic and potential energies is the same at the
two points. Whenever the cart gets back to the same
height (y1, y2, or any other), its potential energy and
therefore also its kinetic energy will be the same as
when it was at that height earlier.

K
3

P
2

=

=

P
1

=

Mgy
1

=

K
2

P
3

The total force on the cart includes the force that
the road exerts on the car. Its component parallel to
the road is the force of friction, which we are neglect-
ing. Its component perpendicular to the road does no
work and therefore we don’t have to know it. All we
need to know is that the mechanical energy at point
1 is the same as the mechanical energy at point 2.

A graph of P against x again looks like the
graph of y against x. The mechanical energy, EM,
is constant, and K = EM − P.

The figure shows the force diagram of the cart,
with the friction that we have been neglecting, but
will include in Example 21.

θ

θ

F
f

F
et

F
n

EXAMPLE 20

The cart, on the same hill as in the previous example,
starts from rest at a height of 20 m above the ground.
(Take the ground as the reference level.) What will
be its speed and kinetic energy when it is at a height
of 5 m? What is the total mechanical energy? For the
kinetic energy we need to know its mass: it is 50 kg.

Ans.:
We have y1 = 20 m, y2 = 5 m, and v1 = 0. We are
trying to find v2. We start with P1 + K1 = P2 + K2,
where P1 = Mgy1 and K1 = 1

2 mv2
1 at point 1, with

similar relations at point 2. M is in each term and can
be cancelled. The rest can be rearranged to give v2

2 =
v2

1 + 2g(y1 − y2), or, since v1 = 0, v2
2 = 2g(y1 − y2).

All the quantities are already in SI units, and we
know that if we put all of them in these units the
result will also be in the same system of units, so that
v2

2 = (2)(9.8)(15) = 294 and v2 = 17.15 m/s. If we
assume that we know all quantities to three significant
figures, the result should also have three significant
figure, and we round it to 17.2 m/s.

The corresponding kinetic energy is ( 1
2 )(50)

(17.2)2 = ( 1
2 )(50)(296) = 7400 J.

[There is a small problem. We saw earlier that
v2

2 = 294 SI units. By rounding 17.15 to 17.2 we have
changed its square from 294 to 296! As you can see,
it is best to keep an extra digit, and decide only at the
end how many figures are significant and should be
kept. Here the better value for the kinetic energy is
( 1

2 )(50)(294), or 7350 J.]
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What is the total mechanical energy? We don’t
have to specify when, since it is constant. At point
1 there is only potential energy. As long as we con-
tinue to assume the reference level to be at the bottom
of the track, it is Mgy1, or (50)(9.8)(20), or 9800 J.
At point 2 the potential energy is 2450 J, and the
kinetic energy is 7350 J, adding up to the same
9800 J.

EXAMPLE 21

Now let’s change the problem so that it is more
realistic. Let’s say that the speed at point 2, at a
height of 5 m, is only 10 m/s, because some mechan-
ical energy has been lost as a result of dissipative
forces, like friction and air resistance. How much
mechanical energy has been lost, and what happened
to it?

Ans.:
There is no doubt about what happened to it. It
has been transferred as heat, and changed to inter-
nal energy. This internal energy is partly in the
road, partly in the car, and partly in the air.
This time we include all of these as part of the
system, and also the earth. Let’s see how much
the internal energy has increased in these various
places. K2 is now ( 1

2 )(50)(100) = 2500 J. P2 is, as
before, Mgy2 or 2450 J for a mechanical energy of
4950 J. Since the mechanical energy started out at
point 1 (h = 20 m) as 9800 J, 4850 J of mechanical
energy has been dissipated and changed to internal
energy.

EXAMPLE 22

You are an engineer investigating the rollercoaster
shown on the figure, and wish to determine the spring
constant of the launching mechanism shown there.
You may assume that the track is frictionless except
for the rough patch, where the force of friction on a
cart is 0.2 times the weight of the cart. (The coefficient
of sliding friction is 0.2.)

You have a scale and a tape measure.
Describe a procedure to determine the spring

constant, k. List the quantities that you need to
measure and describe how you will measure them.

Ans.:
Choose the system that includes the track, cart,
spring, air, and the earth.

Energy is conserved: K + Pg + Ps + U is con-
stant, where Pg is the gravitational potential energy,
Ps is the elastic potential energy of the spring, and U is
the internal energy. Let Pg = 0 for the initial position
of the cart, let Ps = 0 when the spring is not com-
pressed, and let the height of the cart on the rough
patch be h1 above the beginning position.

Measure the mass, M, of the cart with the
scale. Push the cart against the spring and measure
the distance, x, by which the spring is compressed
with the tape measure. Let go. The cart moves
either (a) up the track to a maximum height, h, and
returns, or (b) it moves up the track, over the hump,
and comes to rest after moving a distance L along
the rough patch. Measure h for case (a) or L for
case (b).

(a) At the initial position Pg1 = 0, Ps1 = 1
2 kx2, K1 =

0; At the final position Pg2 = Mgh, Ps2 =
0, K2 = 0, U1 = U2.

Hence Ps1 = Pg2, so that 1
2 kx2 = Mgh. Do

this for several values of x and h, and solve for
k in terms of the measured quantities.

Ps1 Pg2=

(b) The initial position is same as in part (a). At the
final position is Pg2 = Mgh, Ps2 = 0. The energy
transformed to internal energy is 2MgL.

Hence Ps1 = Pg2 + 0.2MgL, or 1
2 kx2 =

Mgh1 + 0.2MgL. Solve for k in terms of the
measured quantities.

Ps1

ΔU

Pg2

=

RUTGERS U
NIV

ERSITY P
RESS



6.8 Summary / 125

6.7 Power: not what the power
company sells

Power is another word that is loosely used in
everyday language but has a precise meaning in
science, and not necessarily what you might have
expected. We talk about the electric company as
the power company, and many of them have the
word power in their name. But what they sell is
energy.

We use the word power to refer to some-
thing different, namely the rate at which energy
is transferred, i.e., transformed from one kind to
another. It is the quantity that tells us how much
energy is transformed per second from electric
potential energy in a lightbulb, by a household
per month, or by the whole country per year. It
is the energy divided by the time during which
the transfer takes place.

The SI unit for energy is the joule. The unit
for power is the joule/second. It is given its own
name, the watt (W): 1 J/s = 1 W.

While it is turned on, a 40-W bulb uses
energy at the rate of approximately 40 W, or 40 J
in each second. In an hour it uses (40 J/s)(3600 s)
or 144,000 J. A device that uses energy at the
rate of 1000 W, or one kilowatt (kW), will con-
sume (1 kW)(1 h) or one kilowatt-hour of energy
in one hour. That’s equal to (1000 W)(3600 s) or
3.6 × 106J, and that’s what you pay the electric
company for.

EXAMPLE 23

As an example, look at a person whose mass is 75 kg,
running up a flight of stairs, through a vertical height
of 15 m in 12 s. What is the change in the potential
energy, and what is the corresponding power?

Ans.:
The change in P (ΔP), is MgΔy, or (75)(9.8)(15) J,
or 11,025 J. The power is ΔP / t, or ( 11,025

12 ) W, or
919 W.

6.8 Summary

The law of conservation of energy is very simple:
energy is conserved, i.e., the energy of a closed
system remains constant. If the system is not
closed, i.e., if energy enters the system or leaves
it, you have to count the amount of the change of
energy. The energy of the system increases by the
net amount that is transferred to the system. You
have to know what the boundaries of your sys-
tem are. You have to make sure that you count
all the energy that is transferred in or out. Apart
from obvious points that’s it for one of the most
important principles of science.

There are various kinds of energy:

Kinetic energy or energy of motion: 1
2 Mv2;

this is the difference in energy that an object
or system has compared to what it has when it is
at rest.

Potential energy is energy of position. There
are several kinds. The gravitational potential
energy changes by the amount of work that is
done against the gravitational force.

The electric potential energy changes by the
amount of work that is done against the electric
force. The elastic potential energy changes by the
amount of work that is done against the elastic
force (like the force of a spring). A spring that
follows Hooke’s law (Fs = −kx) has an elastic
potential energy 1

2 kx2 when it is stretched by a
distance x from its equilibrium position.

The gravitational potential energy increases
by Mgy when a mass M is moved in the direction
opposite to the gravitational force through a dis-
tance y. The electric potential energy increases
when a charge Q is moved in the direction
opposite to the electric force.

An object has various kinds of internal
energy. It is the kinetic and potential energy of the
object’s constituents. The atoms and molecules
are in motion and have electric potential ener-
gies with respect to each other. The sum of these
microscopic energies is called thermal energy. In
addition, the electrons and nuclei of each atom
have kinetic and mutual potential energies. So do
the nucleons in the nucleus.

Energy can be transferred by doing work and
by heating.

RUTGERS U
NIV

ERSITY P
RESS



126 / Energy and Its Conservation

Power is the rate at which work is done
or energy changes. The SI unit of energy is the
joule (J); the SI unit of power is the watt (W):
1 W = 1 J/s.

6.9 Review activities
and problems

Guided review

1. A box is pushed horizontally by a force of
4 N. A frictional force of 1 N acts in the oppo-
site direction. The box moves forward through
2 m.

(a) What is the work done by the 4 N force?
(b) What is the total work done on the box?
(c) What is the work done by the frictional

force?

2. A box whose mass is 2 kg starts from rest, is
pushed to the right by a force of 4 N, and moves
through 3 m. There are no other horizontal
forces.

(a) Set up a mathematical description that
relates work and energy.

(b) What is the speed of the box after it has
moved through the 3 m? (Use work and energy
relations.)

(c) Repeat parts (a) and (b), but with the
box initially moving with a speed of 3 m/s in the
direction opposite to that of the force.

3. You do 60 J of work lifting a box 2 m. The
box is at rest initially and again after it has been
lifted.

(a) Set up a mathematical description that
relates work and energy.

(b) How much energy does the box gain?
What kind of energy does the box gain?

(c) Determine the mass of the box.

4. A stone has a mass of 0.5 kg and is lifted
through 1.5 m without gaining any kinetic
energy. Answer the following questions:

(a) How much potential energy does it
gain?

(b) It is then dropped from rest. How much
kinetic energy does it gain on the way down?

(c) What is its speed when it gets back to the
starting point?

5. Go to the website phet.colorado.edu and
open the simulation Energy Skate Park. Put the

reference level at the lowest point on the path of
the skater. Slow down the motion as much as
possible. Open the bar graph.

(a) Click on “energy vs. position.” Check
“kinetic” and uncheck the others. Use the results
of the example to calculate the maximum speed
of the skater.

(b) At what height, as a fraction of the maxi-
mum, is K equal to half the total energy? At what
height, as a fraction of the maximum, is the speed
half of the maximum speed?

(c) Pause. Change the track by dragging on
the blue circles. Experiment with the following:

(i) Make the track much steeper on the left
than on the right. What remains constant about
the points where K is zero?

(ii) Lower the right end of the track below
the height of the starting point. What happens?
Why?

(iii) Make a hump in the middle of the track.
What does it take for the skater to overcome this
obstacle?

6. A single proton (Mp = 1.66 × 10−27 kg) is
released from rest near a large positively charged
surface. It loses 4 × 10−18 J of electric potential
energy after moving 0.1 m.

(a) Set up the mathematical description that
relates the energies.

(b) Determine the proton’s velocity after it
has moved the 0.1 m.

7. A rock whose mass is 0.5 kg is shot horizon-
tally from a spring gun. The spring of the spring
gun is initially compressed with an elastic energy
of 11 J.

Use energy bar charts to set up the problem,
and determine how fast the rock is moving just
after it leaves the spring gun.

8. A ball whose mass is 0.2 kg is dropped from
rest at a height of 1.5 m above the floor. It
bounces and comes back to a height of 1.2 m.
How much mechanical energy is lost? What
happened to it?

9. A force of 10 N acts on a box, which moves
horizontally with constant velocity through 2 m.
What is the total work done on the box? Make
a force diagram, showing all forces on the
box, an energy bar chart description, and a
mathematical description that relates work and
energy.
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10. For two moles of oxygen at room tempera-
ture the internal kinetic energy is about 7500 J.
Each mole consists of 6 × 1023 molecules, each
of which has a mass of 2.7 × 10−26 kg.

(a) What is the typical value of the random
speed of an oxygen molecule?

(b) How long would it take the molecules to
move 20 m across a room with this speed?

(c) Why is this not likely to be the actual time
that it takes a molecule to get from one side of
the room to the other?

11. Go to the website phet.colorado.edu and
open the simulation Energy Skate Park. Check
“potential energy reference” and drag the refer-
ence level to the lowest point on the path of the
skater.

(a) Click on “track friction.” Put the slider
marked “coefficient of friction” at the point two
spaces from the left end. “Pause,” and put the
skater back up on the track. “Resume.” How
many complete cycles does it take for the skater
to stop?

Increase the friction by a factor of two and
repeat this.

(b) Click on “Bar graph.” Observe the
changes in K, P, and U. What are the beginning
and end values of K, P, U, and of the mechanical
energy and the total energy (E) as a fraction of
the initial potential energy?

Lower the reference level. What are the
beginning and end values of K, P, U, E, and
the mechanical energy now in terms of the initial
potential energy?

12. A person whose mass is 70 kg runs up a flight
of stairs through a vertical height of 6 m. If she
uses her food with an efficiency of 10%, how
many food calories does she have to consume to
do this work?

13. A force of 12 N acts at an angle of 28◦
to the horizontal. What are its horizontal and
vertical components? If it moves an object
vertically through 2 m, how much work does
it do?

14. A proton moves at constant speed in a circu-
lar path in a cyclotron. Explain how you know
what the total work done on the proton must be
during this motion.

15–16. A pendulum bob whose mass is 0.25 kg
is attached to a string whose mass is so small that

it may be neglected. As the pendulum swings, its
bob moves from a starting height of 18 cm to a
height of 12 cm, measured from the lowest pont
of the motion.

(a) What is the work done by the tension in
the string?

(b) What is the speed at the height of
12 cm?

(c) Use energy bar charts to show the changes
in the energy of the pendulum during this seg-
ment of its motion.

17–18. A ball whose mass is 0.15 kg has an ini-
tial velocity whose horizontal component is 3 m/s
and whose vertical component is 2.5 m/s. Neglect
dissipative forces.

(a) What is its kinetic energy at the starting
point and at the ending point when it returns to
the same height?

(b) What are its kinetic and potential ener-
gies at the highest point?

(c) At a point 1
3 of the way up, what are

the potential and kinetic energies, the height, the
speed, and the components of the velocity?

19–21. A car whose mass is 200 kg moves on
a rollercoaster, starting from rest at a height
of 20 m above ground. If we neglect dissipative
forces, to what maximum height can it return?
At what height would it be moving with a speed
of 5 m/s?

However, when we measure its actual speed
we find that it moves with a speed of only
4 m/s at that height. Describe all energy changes,
and calculate their amount, from the starting
point.

22. You are part of a team of amusement park
engineers. You want to know precisely how
much the spring in the figure should be com-
pressed so that the cart moves up the ramp,
down on the other side, and comes to rest at the
exit, which is to be placed half-way along the
rough patch. You may assume that the track is
frictionless except for the rough patch.
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(a) Describe the energy relationships. Bar
charts may be helpful to set up the mathematical
relationship.

(b) What is the minimum distance through
which the spring must be compressed to reach
the rough patch?

(c) Calculate how much the spring needs to
be compressed so that the cart comes to rest half-
way along the rough patch.

List the quantities that need to be known,
the quantities that need to be measured, and how
they are to be measured.

23. An 80 kg person runs up a flight of stairs
whose vertical height is 12 m. In how much time
does she have to do that to use energy at the
rate of one horsepower? Is this a realistic possi-
bility?

Problems and reasoning
skill building

1. Two forces with equal magnitude pull on a
box: F1 to the right and F2 to the left. The
box moves to the right with constant velocity,
through a distance x. There are no other horizon-
tal forces or forces with horizontal components.

(a) How much work is done by F1?
(b) How much work is done by F2?
(c) What is the total (or net) work, WT, done

on the box?

2. Two forces pull on a box, F1 to the right and
F2 to the left. The magnitude of F1 is twice the
magnitude of F2. There are no other horizontal
forces or forces with horizontal components. The
box moves to the right through a distance x.

In terms of the magnitude F2:
(a) How much work is done by F2?
(b) How much work is done by F1?
(c) What is the total work, WT, done on the

box?
(d) Does the kinetic energy change as the box

moves through the distance x, and if so, by how
much?

3. An alpha particle (a positively charged helium
nucleus) is emitted from a radium nucleus
with a kinetic energy of 3.6 MeV. It moves
straight toward a gold nucleus (also positively
charged). Assume that the gold nucleus remains
at rest.

Describe the motion and energy changes of
the alpha particle with the help of energy bar
charts. (This is the experiment in Rutherford’s
laboratory that established the existence of the
atomic nucleus.)

(a) Sketch a graph of the speed of the alpha
particle as a function of its distance, r, from the
center of the gold nucleus.

(b) Sketch a graph of the velocity of the alpha
particle as a function of r.

4. A ball is released from rest, bounces four
times, and then stops.

Sketch graphs of the following quantities as
a function of the height of the ball from the
ground:

(a) potential energy,
(b) kinetic energy,
(c) mechanical energy,
(d) internal energy.
(e) What happens to the mechanical energy?

5. A vertical spring is held fixed at one end, and a
weight is attached at the other end. The weight is
pulled down, then released, and the spring oscil-
lates up and down as the weight moves from its
minimum height to the equilibrium position and
then to its maximum height and back.

At what positions of the weight are the fol-
lowing quantities at their maximum, at zero, and
at their minimum:

(a) gravitational potential energy,
(b) elastic potential energy,
(c) kinetic energy.

6. A baseball is batted, hits the ground, and is
then caught.

(a) Describe the sequence of energy transfor-
mations of the ball that takes place from the time
it leaves the bat.

(b) Start at some point in the past (before
the player’s breakfast) and describe the energy
transformations leading up to the moment when
the ball leaves the bat.

7. Describe the energy transformations of a pen-
dulum from the time when it is released, neglect-
ing dissipative forces.

8. Describe the energy transformations of a pen-
dulum from the time when it is released (not
neglecting dissipative forces) until it stops and
remains at rest.
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9. Describe each of the lines on the energy dia-
gram (P, EM, and K) of Example 17.

10. A ton of coal is hoisted up at constant speed
through a height of 15 m by a crane.

(a) What are the forces on the load of coal?
(b) What is the total (net) force on the load?
(c) What is the work done by each of the

forces on the load?
(d) What is the total work done on the load?

11. An elevator whose mass is 200 kg moves
up at a constant speed through a distance of
20 m.

(a) What is the gravitational force on it?
(b) What other forces act on it?
(c) What is the work done on the elevator

against the gravitational force?
(d) What is the work done on the elevator

by the gravitational force?
(e) What is the total work done on the

elevator?
(f) What are the energy changes of the

elevator?

12. A stone falls from rest and hits the ground
with speed v. Neglect air resistance.

(a) What is its speed as it passes a point
halfway to the ground?

(b) What is its speed as it passes a point three
quarters of the way to the ground?

13. A ball whose mass is 0.25 kg is thrown
straight up. It reaches a height of 16 m before
falling back to where it started. Neglect air resis-
tance, and use the starting point as the reference
level where y = 0 and the potential energy, P,
is zero.

(a) Draw a graph of P against y.
(b) On the same coordinate system, draw

graphs of the mechanical energy, EM, and the
kinetic energy, K.

(c) Use the graphs to set up mathematical
expressions for P, EM, and K in terms of y.

14. A block whose mass is 2.4 kg slides down an
inclined plane, starting from rest. It slides to the
bottom through a height, y, of 1.2 m, while the
distance along the plane, s, is 2 m.

(a) For this part neglect friction and air resis-
tance, and take the reference level to be at the
bottom. Draw graphs of the potential energy (P),
the kinetic energy (K), and the mechanical energy

(EM) in terms of the distance (s). (Take s = 0 at
the starting point.)

(b) Now assume that there is a constant
frictional force of 3 N and no other dissipative
forces. What is the mechanical energy when the
block reaches the bottom?

(c) Again draw graphs of P, EM, and K, and
also the dissipated energy, Q, in terms of s.

15. A rock whose mass is 0.2 kg is dropped from
a height of 10 m.

(a) First assume that there is no air resis-
tance, and take the reference level to be at the bot-
tom. Draw graphs of P, K, and EM as a function
of the height until the rock hits the bottom.

(b) Use the graphs to set up mathematical
expressions for the three energies.

(c) Now assume that there is some air resis-
tance. Again draw graphs of P, K, EM, and the
dissipated energy, Q.

Use the graphs to write the mathematical
expressions for each of the energies.

(d) Repeat parts (a) and (b), but this time use
the starting point as the reference level.

(e) Still using the starting point as the refer-
ence level, write down the relation between y and
the time, t. Use it to get an expression for K in
terms of t, and draw a graph of it.

16. A spring hangs vertically, with one end fixed.
At the other end a weight whose mass is 0.15 kg
hangs from it. The spring constant is 12 N/m.
Neglect all dissipative forces, and also the mass
of the spring. Assume that the spring obeys
Hooke’s law.

(a) The system is at rest. What is the elastic
potential energy?

(b) You pull the weight down with a force
of 1.2 N until it is again at rest. Which energies
change? By how much?

(Sketch a figure with the spring and weight.
Where have you chosen the reference level? Mark
it on your figure. You can only choose one! In
this problem there is really only one good choice,
namely, where the elastic energy is zero.)

What is the mechanical energy now?
(c) You then release the 0.15 kg weight. The

spring returns to the equilibrium point of part
(a). What are the various energies now?

(d) The weight continues upward. What is
the criterion for how far it goes? Find the value
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of y at the highest point, measured from the
reference level that you chose in part (b).

17. A ball is thrown straight up from ground
level, and eventually returns to the same height
N. It has an initial velocity v0y. Neglect all
dissipative forces.

Write expressions in terms of these two
quantities for the following:

(a) The largest kinetic energy. Where does it
occur?

(b) The smallest kinetic energy. Where does
it occur?

(c) The maximum potential energy. (Be sure
to state what reference level you have chosen.)

(d) The maximum height.
(e) The mechanical energy.
(f) What is the amount of work that had to

be done on the ball as it was thrown?

18. Repeat the previous problem, but with an
additional component of the initial velocity in the
horizontal direction, v0x.

19. For each of the listed situations, neglecting
all dissipative forces, do the following:

(i) Identify the system that you wish to
consider; describe the initial and final states.

(ii) Describe the energy transformation pro-
cesses in words and with bar charts.

(iv) Draw a force diagram showing all the
forces on the system.

(a) A pendulum bob swings down, starting
from rest.

(b) An elevator, moving up, slows down
until it stops.

(c) A block is launched up an inclined plane
by a compressed spring.

(d) Another system of your choice.

20. A bucket hangs from a rope. The other end
of the rope is held by a woman. The tension in
the rope is 50 N. All movements take place with
constant velocity. What is the work done by the
rope in each of the following cases?

(a) She moves 5 m horizontally without
changing the height of the bucket.

(b) She lifts the bucket 0.5 m.
(c) She lowers the bucket 0.5 m.
(d) She pulls the bucket up an incline, mov-

ing it 1 m vertically and 0.5 m horizontally.
(e) She lowers the bucket down the same

incline by the same distance as in part (d).

21. (a) Corresponding to each of the following
mathematical relations, describe a possible pro-
cess, in words, with a sketch, and with bar charts:

K1 + W = P2 and
P1 + W = K2.
(b) Write a problem with numerical values

for each of these situations.

22. A tennis ball has a mass of 0.057 kg. It falls
18 m vertically, from rest, and then has a speed
of 12 m/s.

(a) Identify the system that you wish to
consider.

(b) What are the initial and final states?
(c) What are the energy transformations?
(d) Draw the corresponding energy bar chart

and draw a force diagram.
(e) Write a mathematical statement that

describes the energy transformations.
(f) What is the magnitude of the average

resistive (dissipative) force?

23. A spring has a spring constant of 1.2 ×
104 N/m. A 10 kg block is placed against it,
and the spring is compressed 6 cm. The spring is
then released, shooting the block forward along
a horizontal surface against a force of friction
of 15 N.

Follow steps (a) to (e) of the previous prob-
lem.

(f) How far does the block travel before
coming to rest?

24. A block is pulled up an inclined plane with
constant speed against a constant frictional force.

(a) Identify the system that you wish to
consider.

(b) Draw a force diagram, showing all forces
on the system.

(c) Describe all energy transformations.
(d) What quantities do you need to know to

calculate the dissipated energy.

25. A 900 kg car starts from rest, with its engine
off, and rolls a distance of 50 m down a hill. A
400 N frictional force opposes the motion. When
the car reaches the bottom it is moving with a
speed of 8 m/s.

(a) Describe the energy transformations
using energy bar charts.

(b) Use your charts to write a mathematical
statement that describes the energy transforma-
tion processes.
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(c) What is the vertical height through which
the car moves?

26. A slide is 42 m long and has a vertical drop
of 12 m. A 60 kg man starts down the slide with
a speed of 3 m/s. A frictional force opposes the
motion, causing 20% of the kinetic energy to be
dissipated.

(a) Identify the system that you wish to
consider and its initial and final states.

(b) Describe the energy transformation pro-
cesses using energy bar charts.

(c) Use your charts to write a mathematical
statement that describes the energy transforma-
tions.

(d) What is his speed at the bottom?
(e) What is the magnitude of the average

frictional force?

27. Two children ride a sled down a hill, starting
from rest. Neglect all dissipative forces.

(a) Identify the system that you wish to
consider, and its initial and final states.

(b) Use the following representations to
describe what happens: a sketch of the hill, sled,
and children; a force diagram; energy bar charts;
a mathematical statement of the relation between
the various initial and final energies.

(c) The mass of the sled with the children in
it is 150 kg. Their speed at the bottom is 13 m/s.
What is the vertical height through which they
move?

28. Repeat parts (a) and (b) of the previous prob-
lem, but with an initial velocity at the top of the
hill, and some dissipated energy.

(c) Make up a problem for this situation by
giving some numerical quantities and asking for
two others. Show the solution of your problem.

29. A ball (M = 0.60 kg) is dropped off a cliff,
starting from rest. What is its kinetic energy just
before it hits the ground 30 m below? (Neglect
air resistance.) What is its speed?

30. A ball (M = 0.50 kg) is thrown vertically,
with an initial kinetic energy of 50 J. (Neglect air
resistance.)

(a) What is its kinetic energy when it comes
back to the starting height?

31. (a) When a ball (M = 0.50 kg) is thrown at
an angle of 24.6◦ with an initial energy of 50 J
it is observed that its kinetic energy as it hits the

ground is only 90% as high as when air resistance
is neglected. How much mechanical energy has
been lost during the flight?

(b) When the ball is thrown at a different
time, it hits the ground with a speed that is 90%
of that calculated when air resistance is neglected.
How much mechanical energy is lost during the
flight this time?

32. A ball (M = 0.40 kg) drops from a height of
5 m. After it bounces it rises only to a height of
4.0 m. How much mechanical energy has been
lost?

33. A block (M = 1.5 kg) slides down an incline
at a constant speed. Its vertical height decreases
at a rate of 0.50 m/s. How much internal energy
is produced in eight seconds? What is the rate of
energy dissipation in watts?

34. A toaster is marked 500 W, indicating that
this is its power consumption when it is turned
on. It takes three minutes to toast two pieces of
bread. How many joules are used during that
time? What is the cost if the electric energy costs
20 cents per kwh?

35. A ball (M = 0.50 kg) is thrown straight
upward with an initial kinetic energy of 75 J.
Neglect dissipative forces, assume that the poten-
tial energy, P, is zero at the starting point, and
find the following:

(a) K at the highest point,
(b) P at the highest point,
(c) the distance between the lowest and the

highest point,
(d) K when the ball falls back to the starting

point.

36. A block whose mass is 2 kg slides along a
table, starting with a speed of 4 m/s. It gradu-
ally comes to a halt as a result of friction. How
much internal energy (in J and in cal) is produced
during this process?

37. A child is on a swing that starts from rest at a
point 1.8 m above the lowest point. The mass of
the child together with the swing is 30 kg. If you
neglect all dissipative forces, what are the maxi-
mum kinetic energy and speed of the swing with
the child?

38. Consider the child and swing of the previous
problem, but this time do not neglect dissipa-
tive forces. Without a push the swing does not
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come back to the same height, but stops at a point
60 cm lower. How much energy does the father
have to supply with each push if the swing is to
come back to its original height of 1.8 m above
the lowest (central) position?

39. The unit called the horsepower is equal to
550 ft−lb

s . Calculate how many W this corre-
sponds to.

40. A proton (Mp = 1.66 × 10−27 kg) is 10 cm
from a large, positively charged plane, as in the
figure accompanying Example 6. The charges
on the plane give rise to a constant force of
3 × 10−10 N on the proton, away from the plane.
Use energy bar charts to set up the problems and
answer the following questions.

(a) The proton is initially at rest, and then
moves through a distance of 1 cm. What is its
kinetic energy after it has moved through the
1 cm? What is its speed?

(b) The proton is initially moving toward
the plane with a kinetic energy of 5 × 10−12 J.
Describe its subsequent motion. What is the dis-
tance of its closest approach to the plane? How
fast is it moving when it is 11 cm from the plane?

41. In the ground state of the hydrogen atom
the electron has a kinetic energy of 13.6 eV.
(1 eV = 1 electron volt = 1.6 × 10−19 J.) The
electric potential energy is less by 27.2 eV than
when the electron is far removed from the
proton.

Use as reference level for the potential energy
the state where the electron and the proton are
infinitely far from each other. (This is then the
state where the potential energy is zero.) With
this reference level, what are the potential energy
and the total energy of the atom in its ground
state?

How is this amount of energy related to the
amount that has to be supplied to the atom to sep-
arate the proton and the electron to a point where
each is at rest far from the other? (This amount
is called the ionization energy of the electron, or
its binding energy.)

42. A satellite moves around the earth at a height
that is small compared to the radius of the
earth. An object or person in the satellite is often
described as “weightless.”

(a) What has happened to the weight of
the object or person, defined, as we do in

this book, as the gravitational attraction of the
earth?

(b) Which force on the object or person,
sometimes defined as the weight, is zero?

43. How much energy does a diet of 2000 Calo-
ries per day supply to the human body in one
day? (These are food calories, or kilocalories,
each equal to 4186 J.) Use the number of sec-
onds in a day to find the rate of energy use in
watts corresponding to this diet.

44. You are told that a car has 106 J of kinetic
energy and 2 × 106 J of potential energy. In what
respect is this an incomplete statement?

45. When you go up two floors, approximately
how much does your potential energy increase?
If you run up in 10 seconds, what is the rate at
which you expend energy (in W)?

46. A pendulum consists of a mass (M) and a
string of length L. How fast must the mass be
moving at the lowest point to be able to just move
in a full circle?

Multiple choice questions

1. A rock falls from rest and hits the ground with
speed v. (Neglect air resistance.) Halfway along
its path to the ground its speed is

(a) 2v
(b)

√
2v

(c) 1
2 v

(d) 1√
2
v

2. A ball loses a third of its kinetic energy as it
bounces off the floor. What is the fraction of its
original height, H, to which it rises before coming
to rest? (Neglect air resistance.)

(a) 1
3

(b) 2
3

(c) 1√
2

(d)
√

2
3

3. A ball loses a third of its speed as it bounces
off the floor. What is the fraction of its original
height, H, to which it rises before coming to rest?
(Neglect air resistance.)

(a) 4
9

(b) 2
3
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(c)
√

2
3

(d) 1
3

4. Two astronauts sit in a spaceship that orbits
the earth at a height of 20 km. Which of the
following forces is zero?

(a) The gravitational force of one astronaut
on the other.

(b) The gravitational force of the earth on
one astronaut.

(c) The force of the floor of the spaceship on
one astronaut.

(d) The centripetal force on one astronaut.

5. Assume the approximation that the moon
(mass m) travels around the earth in a circular
orbit of radius R with speed v. The work done
on the moon in one complete revolution is

(a) mgR
(b) 1

2 mv2

(c) mv2

R
(d) zero

Synthesis problems and projects

1. Fill in the missing steps at the end of Section

6.3 leading to T = 2π
ω

and T = 2π
√

m
k .

2. Go to the PhET website and open the simula-
tion Masses and Springs.

(a) Hang one of the masses on one of the
springs and set it into oscillation without fric-
tion. Measure the period, T. Calculate the spring
constant, k from T and m.

(b) Put different known masses on the same
spring and measure the equilibrium position for
each. (It is easiest to do this after putting on a
lot of friction to stop the motion.) Draw a graph
of F against x and find the spring constant from
your measurements.

(c) Find the masses of the unmarked weights.
Calculate T for one of these weights. Check it
with a direct measurement of T.

3. You have the following equipment:
(a) a spring whose spring constant you

know,
(b) a track that can be inclined and whose

friction is negligibly small,
(c) a glider whose mass you know,
(d) a motion detector,
(e) a ruler.

Describe an experiment that you can do with
this equipment to test the law of conservation of
energy.

4. On a pool table the “cue” ball is given a veloc-
ity of magnitude v in the y direction. It hits
another equal ball. After the collision the two
balls move with velocities whose magnitudes are
v1 and v2 at an angle of 90◦ with respect to each
other.

(a) Draw a vector diagram of the momenta
before and after the collision.

(b) After the collision, what is the relation
between the components in the x and y direction
of the velocity of each ball?

(c) What is the relation between v, v1,
and v2?

5. A block with mass M hangs at rest from a
string whose upper end is fixed. A pistol shoots a
bullet (mass m and velocity v) into the block. The
block with the bullet embedded in it then begins
to move with a horizontal velocity V .

(a) What law of physics governs the collision
of the bullet and the block and determines the
velocity V?

(b) What is the relation between v and V?
(c) Following the collision the mass rises.

What law of physics determines the height, H,
to which the block (with the bullet in it) rises?

(d) Derive the relation that gives v in terms
of the quantities V , m, M, and H.

(This arrangement is called a ballistic pen-
dulum. It can be used to measure the speed of a
bullet.)

6. The amount of energy used each day by prim-
itive people was roughly what they ate, of the
order of 2000 kcal. Look up the total energy
used per year in the United States and use this
number to calculate the yearly consumption per
person, and the consumption per person, per sec-
ond, in watts. By what factor is this larger than
the amount used by primitive people?

7. What, approximately, is the average speed (in
m/s) corresponding to the world record of run-
ning 100 m? One mile? How much kinetic energy
does each of these correspond to? Answer the
same questions for your walking fairly fast for
one mile.

What, roughly, are the corresponding
kinetic energies? Make an assumption of how
long it takes the 100 m sprinter to reach a kinetic
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energy equal to his average kinetic energy, and
calculate the required power in watts. How many
horsepower is that equivalent to?

8. You are sliding quarters down a ramp. You
want to know how large the effect of friction is,
and whether it can be ignored.

You have a motion detector and a meter-
stick. Show how you can use them to answer
these questions.

9. A spring, sitting vertically on a table, is com-
pressed. It is released, and jumps up in the air.
You want to check whether mechanical energy
is conserved as this happens. You have a scale,
a ruler, and a set of weights. Describe a possible
procedure.

10. Describe an experiment that you can use to
convince a classmate that cos θ is important in
the definition of work.
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