
gravlens 1.06

Software for Gravitational Lensing

Chuck Keeton

Version 9 January 2004

c© 2001–2004 Charles R. Keeton II
All rights reserved.

2

Acknowledgements

The techniques and code presented here have been under development for several years, and

many people have contributed to the work. Chris Kochanek has offered a tremendous number of

ideas, and has thoroughly tested each feature as it was added to the code. Joanne Cohn, Jose Muñoz,

David Rusin, Brian McLeod, and Joseph Lehár have put the code through numerous real-world tests,

uncovering many species of bugs and offering helpful suggestions for the code and documentation.

My thanks to them, and to all of the other users who have offered comments at various times.

Support for this work has been provided by ONR-NDSEG grant N00014-93-I-0774, NSF grant

AST-9407122, NASA ATP grant NAG5-4062, Steward Observatory, and Hubble Fellowship grant

HST-HF-01141.01-A from the Space Telescope Science Institute, which is operated by the Associa-

tion of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555.

3

Contents

1 Introduction 8

1.1 Introduction and outline . 8

1.2 Conventions . 9

1.3 A review of lens theory . 11

2 Development History 13

3 Mass Models 14

3.1 Basic equations . 14

3.2 Canonical lens models . 16

3.3 Composite lens models . 16

3.4 Choosing a mass model . 17

3.5 Appendix: Notes on the canonical models . 22

4 Basic Lensing Calculations: The gravlens Kernel 28

4.1 Specifying the tiling . 28

4.2 Specifying the mass model . 32

4.3 Using tabulated models . 35

4.4 Solving the lens equation . 38

4.5 Handling catastrophic images . 39

4.6 Specifying the cosmology . 41

4.7 Miscellaneous . 41

4.8 Checking the code . 42

4.9 Making pictures . 42

4.10 Simple lensing calculations . 44

4.11 Sample runs . 46

5 Strategies for Modeling Strong Lenses 50

5.1 Point images . 50

4

5.2 Linear parameters and constraints . 52

5.3 Curve fitting . 52

5.4 Ring fitting . 54

5.5 Common degeneracies . 55

6 Modeling Strong Lenses: The lensmodel Application 56

6.1 Overview . 56

6.2 Specifying the lens data . 57

6.3 Specifying data registrations . 66

6.4 Using linear parameters and constraints . 68

6.5 Controlling the parameters . 68

6.6 Controlling the optimization . 71

6.7 Optimizing the model . 73

7 A lensmodel Tutorial 80

7.1 Data . 81

7.2 Preliminary models . 82

7.3 Elliptical models . 83

7.4 Models with external shear . 84

7.5 Models with the group . 86

7.6 Other models . 89

7.7 Using time delays to determine the Hubble constant 90

8 Warnings and Error Messages 92

9 Known Limitations 93

10 Index 94

5

List of Tables

3.1 Canonical lens models . 19

3.2 Definitions of the canonical models . 20

3.3 Definitions, cont. 21

3.4 An approximate exponential disk model . 27

6.1 Features of lensmodel . 58

6.2 χ2 values for lensmodel errors . 78

6.3 Output files for lensmodel . 79

6

List of Figures

4.1 Sample image plane grids . 31

4.2 An explanation of phantom images . 40

5.1 Geometries for curve fitting . 53

6.1 Curve data for the 4-image lens MG J0414+0534 (see [RGM+00]; data courtesy E. Ros

and J. Muñoz). 63

7.1 PG 1115+080: Elliptical model . 84

7.2 PG 1115+080: Ellipticity/shear degeneracy . 87

7.3 PG 1115+080: Group models . 89

7

Chapter 1

Introduction

1.1 Introduction and outline

The gravlens package comprises two stand-alone applications that offer somewhat different capa-

bilities: gravlens includes a wide range of basic lensing calculations, while lensmodel adds many

routines for modeling strong lenses. (A package for computing lens statistics is under development.)

Two companion papers present the conceptual foundation of the code ([Kee01b]) and a catalog of

mass models for lensing ([Kee01a]). This manual explains technical details of the applications as

follows:

• Chapter 1: Describes conventions in the code and manual, and reviews the basic lens theory

needed to understand how the code works.

• Chapter 2: Reviews the development history, giving changes from previous versions of the

software.

• Chapter 3: Describes ellipsoidal lens models, including the “canonical” lens models available in

the code (§3.2 and Table 3.2). Also discusses how to combine multiple ellipsoidal lens models

into composite models that offer a great deal of complexity and generality.

• Chapter 4: Describes how to run the gravlens application, which includes all the basic ca-

pabilities of the code for standard lensing calculations. The features in gravlens form the

foundation of the entire code package, so this is a very important chapter.

• Chapter 5: Reviews general strategies for modeling strong lenses, many of which are imple-

mented in the lensmodel application.

• Chapter 6: Describes how to use lensmodel to model strong lenses.

• Chapter 7: Offers a lensmodel tutorial with step-by-step examples.

8

• Chapter 8: Lists warnings and error messages that you might encounter.

• Chapter 9: Lists some known limitations of the current version of the software.

1.2 Conventions

The applications are controlled by a command-driven, user-friendly interface. In this manual,

unixprompt% represents the Unix system prompt, while > represents the prompt of the applica-

tion interface. Most commands take command-line arguments, and these are denoted by

> command <arg1> <arg2> [arg3]

where angle brackets (<arg1>) denote required arguments and square brackets ([arg3]) denote

optional arguments. Some commands will prompt you to enter further information, and this case is

denoted by

> command <args...>

<further input goes here>

You can run any of the gravlens applications interactively and enter commands at the prompt,

for example:

unixprompt% gravlens

> help

...

> quit

unixprompt%

Or you can collect the commands into an input file, for example foo.in containing

help

...

quit

and then run the application with the command

unixprompt% gravlens foo.in

The code accepts multiple input files, for example

unixprompt% gravlens foo1.in foo2.in [...]

Regardless of whether you run the code interactively or with input files, you can include blank lines

or comment lines beginning with #. The ability to include blank lines and comments applies to all

data files as well.

The applications offer rudimentary online help via the help command. The command

9

> help

lists all the available commands with brief descriptions, while the command

> help <command>

gives more detailed help on a particular command.

There are a number of commands use a loop to repeat a calculation for a range of values of some

parameter. Such commands have the form:

foo 〈x lo〉 〈hi〉 〈steps〉
Performs some operation repeatedly, looping over x from lo to hi in the specified number

of steps.

Important note: If steps > 0 the loop takes linear steps, but if steps < 0 the loop takes

logarithmic steps. For example, the command

> foo 2.0 10.0 5

would yield a loop with x = 2, 4, 6, 8, 10. By contrast, the command

> foo 2.0 10.0 -5

would yield a loop with x = 2, 2.99, 4.47, 6.69, 10.

Each application gives you complete control over its operation via a set of internal variables,

which are discussed in the relevant chapters. Each variable has a default value that gives reasonable

operation, so you can run without having to set any values. But if you wish to fiddle, use the set

command to view or change the current value of a variable:

set 〈variable〉 = 〈value〉
Sets the specified variable to the specified value.

set [variable]

Shows current variable values. If variable is specified, shows only its value; otherwise shows

all variable values.

In this manual, the default value of each variable is given in square brackets ([...]) as part of the

variable’s definition.

To end the program use the quit command.

10

1.3 A review of lens theory

A thorough discussion of lens theory is given in the book by [SEF92]; I summarize the relevant

aspects here. Note that lensing calculations are all two-dimensional calculations based on projected

densities and potentials; in this manual, r is always a projected radius, r =
√
x2 + y2. Suppose

a source at angular position u emits a light ray that passes a foreground mass distribution (the

lens) with impact parameter x before arriving at the observer. The light ray is deflected by the

gravitational field of the lens, which is assumed to occupy a small fraction of the total path length

(the “thin lens” approximation).1 Compared to an undeflected ray, the deflected ray has a longer

travel time because it has a longer geometric length and because it passes through a gravitational

potential well. The extra light travel time is

τ(x) =
1 + zl
c

DolDos

Dls

[
1
2
|x− u|2 − φ(x)

]
, (1.1)

where zl is the redshift of the lens, and Dol, Dos, and Dls are angular diameter distances from the

observer to the lens, from the observer to the source, and from the lens to the source, respectively.

The potential φ is the two-dimensional gravitational potential that is related to the surface mass

density Σ(x) of the lens by the Poisson equation

∇2φ(x) = 2κ(x) , (1.2)

where κ(x) = Σ(x)/Σcr is the surface mass density in units of the critical surface density for lensing,

Σcr =
c2

4πG
Dos

DolDls
. (1.3)

By Fermat’s principle, images form at stationary points of the time delay surface, or at solutions of

the equation

u = x−∇φ(x) . (1.4)

This is the general form of the gravitational lens equation (for a single lens plane). It relates the

source position u to the image position x via the deflection angle α = ∇φ.

The lens equation shows that image positions are completely determined by the deflection func-

tion, which is given by the first derivatives of the potential φ. Inverting the Poisson equation and

differentiating gives the deflection in terms of an integral over the surface mass density,

α(x) =
1
π

∫
x− y

|x− y|2
κ(y) dy . (1.5)

The lens also distorts and amplifies the image(s) in a manner described by the magnification tensor,

which is the Jacobian of the lens mapping,

µ ≡
(
∂u
∂x

)−1

=
[

1− φ,xx −φ,xy
−φ,xy 1− φ,yy

]−1

, (1.6)

1The code currently assumes a single lens plane.

11

where subscripts denote partial differentiation, φ,ij ≡ ∂2φ/∂xi∂xj . Generically, a strong lens has

one or more “critical curves” in the image plane along which detµ−1 = 0, which map to “caustics”

in the source plane. Caustics are important because they are places where the number of images

changes, and a source near a caustic is highly amplified and distorted.

For any calculation involving just the locations and brightnesses of images (which includes most

lensing applications), we can completely specify the lensing properties of a given mass distribution by

giving the first and second derivatives of the potential φ. If we also need the relative time delays (such

as for lensing measurements of the Hubble constant H0), then from eq. (1.1) we need the potential

φ itself. The companion paper ([Kee01a]) reviews the potentials, deflections, and magnifications for

an extensive collection of lens models.

A word about units. The time delay equation (1.1) is written for image and source positions

x and u in angular units. However, the lens equation (1.4) is more general and makes no explicit

assumptions about units. If L is the basic unit of length, then the image and source positions have

dimension L. The scaled surface density κ is dimensionless. Then by eq. (1.2) the potential φ has

dimension L2, and hence the deflection ∇φ has dimension L. When modeling observed lenses, it

may be natural to take L to be an angular unit (such as arcseconds). When studying theoretical

lenses there may be a natural length scale, for example in microlensing the Einstein ring radius of

the lens star.

12

Chapter 2

Development History

• v1.0 – 14 Feb 2001

First general release.

• v1.01, v1.02 – 11 July 2001

Small additions, including clus3 models and the verbose variable; minor internal tweakings.

• v1.03 – 7 Aug 2001

Added elliptical versions of nfwcusp models; extended cusp models to handle n = 3; added

the version command; upgraded the curve fitting algorithm to handle multiple families of

curves (see p. 63). Note that the curve fitting algorithm is likely to change further; contact

me for more information.

• v1.04 – 4 June 2002

Added alphapot and nuker models; added calcRein command; added vertmode variable

(thanks to Chris Kochanek); fixed a small bug in the use of omitcore; added more precision

to devauc models (the k constant was changed from 7.67 to 7.66925001; thanks to Paul

Schechter); fixed a typo in the manual in the equations for softened power law models

(thanks to David Rusin).

• v1.05 – 10 Feb 2003

Added magtensor, tt mock1 and mock2 commands; added maxshear and NGALMAX variables;

improved use of chiperpoint variable; updated normalization of cusp model class; added

monopole, mpole, and intshr models for multipole series; also added boxypot model class.

• v1.06 – 9 Jan 2004

Add autogrid, plotkappa, SBmap1, SBmap2, findimg2, and findimg3 cmmands; added

jaffe, nfwpot, and fourmode model classes; modified nfwcusp model class to use a fitting

formula for the case γ = 1.5; modified mock1 and mock2 commands to add more capabilities;

made small changes to plotdef0 command and convrg model class.

13

Chapter 3

Mass Models

To solve the gravitational lens equation (1.4) we need to know the lensing properties (mainly the

deflection and magnification) corresponding to a given mass distribution. The magnification compo-

nents are derivatives of the deflection, so evaluating the deflection is the key step. Unfortunately, for

a general mass distribution the deflection integral (eq. 1.5) cannot be evaluated analytically. If the

mass distribution has ellipsoidal symmetry, though, the integral can be simplified and in some cases

evaluated analytically. The gravlens package includes analytic or simple numerical solutions for a

canonical set of ellipsoidal lens models. Moreover, it allows you to combine the canonical models in

arbitrary ways to obtain an enormous variety of composite lens models representing, for example,

galaxy groups, galaxies or clusters with substructure, stars with planetary systems, etc.

This chapter describes the canonical models included in the code, which encompasses all models

that are currently used to study lensing phenomena; some of the material in this chapter is re-

peated from the companion catalog of mass models ([Kee01a]). The basic equations for the lensing

properties of ellipsoidal mass distributions are given in §3.1. The canonical models are defined in

§3.2. Combining canonical models to produce much more general composite models is discussed in

§3.3. The choice of appropriate mass models is discussed in §3.4. Finally, Tables 3.2–3.3 summarize

the canonical models, and §3.5 reviews some technical details of the models. See the catalog for a

detailed discussion of all of the canonical models, including known analytic results for their lensing

properties.

3.1 Basic equations

The general expression for the deflection in terms of a 2-d integral over the mass distribution is given

in eq. (1.5). If the mass distribution has circular symmetry, the situation simplifies considerably.

The deflection vector is purely radial and has amplitude given by the 1-d integral

φ,r(r) =
2
r

∫ r

0

uκ(u) du =
1

πΣcr
M(r)
r

, (3.1)

14

which is often easily evaluated. This function can be integrated to obtain the potential or differen-

tiated to obtain the magnification. The catalog ([Kee01a]) gives the circular deflection for all of the

canonical models.

More generally, we want to consider mass distributions with elliptical symmetry, i.e. with a

surface density of the form

κ = κ(ξ) , where ξ2 = x2 + y2/q2 , (3.2)

where ξ is the ellipse coordinate and q is the projected axis ratio. (This is the functional form

expressed in a coordinate system with the mass distribution centered at the origin and oriented with

its major axis along the x-axis.) The elliptical symmetry makes it possible to reduce the deflection

integral to a 1-d integral (e.g., [Sch90]). We can then write the lensing properties as a set of 1-d

integrals,

φ(x, y) =
q

2
I(x, y) (3.3)

φ,x(x, y) = q x J0(x, y) (3.4)

φ,y(x, y) = q y J1(x, y) (3.5)

φ,xx(x, y) = 2 q x2K0(x, y) + q J0(x, y) (3.6)

φ,yy(x, y) = 2 q y2K2(x, y) + q J1(x, y) (3.7)

φ,xy(x, y) = 2 q x y K1(x, y) (3.8)

where the integrals are

I(x, y) =
∫ 1

0

ξ

u

φ,r (ξ(u))

[1− (1− q2)u]1/2
du (3.9)

Jn(x, y) =
∫ 1

0

κ
(
ξ(u)2

)
[1− (1− q2)u]n+1/2

du (3.10)

Kn(x, y) =
∫ 1

0

uκ′
(
ξ(u)2

)
[1− (1− q2)u]n+1/2

du (3.11)

where ξ(u)2 = u

(
x2 +

y2

1− (1− q2)u

)
(3.12)

and κ′(ξ2) = dκ(ξ2)/dξ2. Note from eq. (3.9) the potential can be written as an integral over the

circular deflection function φ,r from eq. (3.1), but φ,r must be evaluated at the appropriate ellipse

coordinate ξ(u). Also, the deflection and magnification integrals are written here in terms of κ(ξ2)

because the canonical models generally depend on ξ2 rather than ξ alone.

For reference, if you need third-order derivatives of the potential, they are:

φ,xxx(x, y) = 2 q x
[
2x2 L0(x, y) + 3K0(x, y)

]
(3.13)

15

φ,xxy(x, y) = 2 q y
[
2x2 L1(x, y) +K1(x, y)

]
(3.14)

φ,xyy(x, y) = 2 q x
[
2y2 L2(x, y) +K1(x, y)

]
(3.15)

φ,yyy(x, y) = 2 q y
[
2y2 L3(x, y) + 3K2(x, y)

]
(3.16)

where the additional integrals are

Ln(x, y) =
∫ 1

0

u2 κ′′
(
ξ2(u)

)
[1− (1− q2)u]n+1/2

du (3.17)

For some of the canonical models these integrals can be evaluated analytically to obtain the

lensing properties (see the catalog, [Kee01a]). For the remaining models the code either evaluates

the integrals numerically or offers an approximate analytic solution, or both.

3.2 Canonical lens models

Table 3.2 lists the models defined in the code and gives brief summaries, while Tables 3.2 and 3.3

define the models in terms of the surface mass densities or potentials. §3.5 gives some notes about

different models, while the catalog ([Kee01a]) gives a more detailed discussion of their properties.

Note that for each models that requires numerical integrals, the code provides a corresponding

tabulated model (e.g., nfw and nfwT); see §4.3 for a discussion of tabulated models. For some of

these models, the code also provides approximate solutions (e.g., devauc and devaucA).

The code uses 10 parameters to describe an ellipsoidal mass distribution:

p[1] = M = mass scale
(p[2], p[3]) = (x0, y0) = galaxy position
(p[4], p[5]) = (e, θe) = ellipticity parameters
(p[6], p[7]) = (γ, θγ) = external shear parameters
(p[8], p[9]) = (s, a) = misc., often scale radii

p[10] = α = misc., often a power law index

Here e = 1 − q is the standard ellipticity. The position angles θe and θγ are always expressed in

observers’ coordinates, i.e. in degrees measured East of North. The ellipticity and shear parameters

can be given in Cartesian rather rather than polar coordinates; see §4.2. The galaxy position

and ellipticity/shear parameters have definitions that are independent of the density profile; they

essentially specify the coordinate frame and are used in exactly the same way in every model. By

contrast, the mass scale, scale radii, and miscellaneous parameter α specify the density profile; their

use is specific to the model and is given in Tables 3.2 and 3.3.

3.3 Composite lens models

Mass models with ellipsoidal symmetry already provide much more generality than purely circular

models. But they are still not fully general. Simple ellipsoidal models are not sufficient to fit

16

many observed strong lenses (e.g., [KKS97]); in many of these cases the departure from ellipsoidal

symmetry can be attributed to tidal perturbations from galaxies near the main lens galaxy (e.g.,

[HB94]; [KK97]; [KCBL97]; [KHB+97]; [Ton98]). In other cases, the symmetry may be broken by

substructure in the lensing mass distribution; examples are spiral galaxies with disks and bulges

inside halos (e.g., [MFP97]; [KK98]), and microlensing by binary stars or stars with planets (e.g.,

[MP91]; [GL92]).

All of these examples share the feature that the general mass model can be written as a combi-

nation of ellipsoidal models. Galaxy groups, binary stars, or stars with planets can all be expressed

as a combination of multiply ellipsoidal mass distributions centered at different positions. Angular

substructure such as isophote twists in elliptical galaxies or the disk+halo construction in spiral

galaxies can be modeled using mass distributions with different profiles and ellipticities that are

all centered on the same point (e.g., [KK98]; [KFI+00]). Another possibility is combining mass

distributions with fixed ellipticity centered at the same point to obtain a new model with a den-

sity profile different from any of the canonical models (also see [SW91]). Examples of this include

the pseudo-Jaffe and King models (different combinations of isothermal ellipsoids; see the catalog,

[Kee01a]), as well as the combinations of ellipsoids that the code uses to obtain an approximation

for the exponential disk (see §3.5).

The code allows composite models composed of arbitrary combinations of ellipsoidal mass dis-

tributions, opening the door to an enormous variety of mass models that you can use.

3.4 Choosing a mass model

Selecting the class of models to use for a particular application is a key part of the modeling process.

When modeling lenses produced by galaxies, a simple and useful place to start is an isothermal

model, i.e. a model with density ρ ∝ r−2 and a flat rotation curve. Spiral galaxy rotation curves (e.g.,

[RFT78]; [RFT80]), stellar dynamics of elliptical galaxies (e.g., [RdZC+97]), X-ray halos of elliptical

galaxies ([Fab89]), models of some individual lenses (e.g., [Koc95]; [CKMK01]), and lens statistics

(e.g., [MR93]; [Koc93]; [Koc96]) are all consistent with roughly isothermal profiles. However, an

isolated isothermal ellipsoid rarely yields a good quantitative fit to observed lenses (e.g., [KKS97];

[WM97]; [KKF98]). In general, adding parameters to the radial profile of the galaxy fails to produce

a good fit, but adding parameters to the angular structure of the potential dramatically improves

the fit (e.g., [KK97]; [KKS97]). The additional angular structure comes from the tidal perturbations

of objects near the main lens galaxy or along the line of sight. In other words, the fact that few

galaxies are truly isolated means that lens models generically require two independent sources of

angular structure: an ellipsoidal galaxy plus external perturbations. The combination of angular

terms can make it difficult to disentangle the shape of the galaxy and the nature of the external

17

perturbations, and it is extremely important to understand any degeneracies between the two sources

of angular structure before drawing conclusions from the models (see [KKS97]).

To move beyond isothermal models and explore other radial profiles, softened power law lens

models have traditionally been very popular. However, these models have flat cores, while early-type

galaxies have cuspy luminosity distributions (e.g., [FTA+97]), and dark matter halos in cosmological

simulations have cuspy mass distributions (e.g., [NFW96]; [NFW97]; [MGQ+98]; [MQG+99]). The

lack of central or “odd” images in most observed galaxy lenses also limits the extent to which galaxies

can have flat cores (e.g., [WN93]; [RM01]). Hence [CKMK01] argue that softened power law models

are outdated and should be replaced with a family of cuspy lens models. The gravlens code includes

several such models, including traditional NFW ([NFW96]; [NFW97]), Hernquist ([Her90]), and de

Vaucouleurs ([dV48]) models, as well as two families of models with general cusps (see Table 3.2).

It will be interesting to determine the extent to which galaxy and cluster lenses are consistent with

a unified family of cuspy halo models. The ability to use a single profile across a wide range of

masses may be limited, however, because it is expected that the baryons significantly modify the

dark matter distribution, especially on galaxy mass scales (e.g., [BFFP86]; [Dub94]).

18

none : no mass
convrg : Convergence from a uniform mass sheet
clus3 : 3rd order cluster terms (à la [BF99])
fourmode : Simple Fourier mode cos(k · x + ϕ)
monopole : General monopole term
mpole : General multipole term
intshr : Internal shear quadrupole
ptmass : Point mass
alphapot : Softened power law potential
alpha : Softened power law density
alphaT : Softened power law density (tabulated)
pjaffe : Pseudo-Jaffe (truncated isothermal) model
king : King model
boxypot : Boxy power law potential
devauc : de Vaucouleurs r1/4 model (numerical)
devaucT : de Vaucouleurs r1/4 model (tabulated)
devaucA : de Vaucouleurs r1/4 model (approximate)
jaffe : Jaffe model (numerical)
jaffeT : Jaffe model (tabulated)
hern : Hernquist model (numerical)
hernT : Hernquist model (tabulated)
nfw : NFW elliptical density (numerical)
nfwT : NFW elliptical density (tabulated)
nfwpot : NFW elliptical potential
nfwcusp : Cuspy NFW model (numerical) – circular only
nfwcuspT : Cuspy NFW model (tabulated) – circular only
cusp : Cusp model (numerical)
cuspT : Cusp model (tabulated)
nuker : Nuker model (numerical)
unidisk : Uniform density disk
expdisk : Exponential disk (numerical)
expdiskT : Exponential disk (tabulated)
expdiskA : Exponential disk (approximate)
kuzdisk : Kuzmin disk
tab : General tabulated model

Table 3.1 Canonical lens models.

19

Model Definition p[1] p[8] p[9] p[10]

convrg κ = κ0 (uniform) κ0 – – –

clus3 φ = r3σ
4 [sin(θ − θσ) + sin 3(θ − θσ)] – σ θσ –

fourmode κ = δκ cos(ex+ ϕ) δκ – – ϕ

monopole κ = 〈κ〉 (r/R0)1−n 〈κ〉 R1 R2 n

mpole φ = − r
nε
m cos

[
m
(
θ − θm − π

2

)]
– – m n

intshr φ = b4γint
2r2 cos 2(θ − θint) b – – –

ptmass κ = π R2
E δ(x) RE – – –

alphapot φ = b
(
s2 + ξ2

)α/2
b s – α

alpha, alphaT κ = 1
2 (b′)2−α [(s′)2 + ζ2

]α/2−1
b′ s′ – α

pjaffe κ = b′

2
√

(s′)2+ζ2
− b′

2
√

(a′)2+ζ2
b′ s′ a′ –

king κ = 2.12b′√
0.75r2

s+ζ2
− 1.75b′√

2.99r2
s+ζ2

b′ rs – –

boxypot φ = b rα [1− ε cos 2(θ − θε)]β b – β α

devauc, devaucT, devaucA κ = b
2NRe exp

[
−k(ξ/Re)1/4

]
b Re – –

jaffe, jaffeT (see eq. 3.28) κs rs – –

hern, hernT (see eq. 3.33) κs rs – –

Table 3.2 – Canonical lens models. Column 2: the potential (φ) or density (κ) as a function of the
elliptical radius ξ or ζ in coordinates aligned with the major axis of the ellipse. Some models are
written in terms of ξ =

(
x2 + y2/q2

)1/2, in which case scale lengths are expressed on the major axis.

Others are written in terms of ζ =
[
(1− ε)x2 + (1 + ε)y2

]1/2 where ε is related to the axis ratio by
q2 = (1− ε)/(1 + ε); in this case scale lengths are expressed on an intermediate axis. Columns 3–6
show how the code parameters relate to the model parameters; “–” means that the code parameter
is not used. Explicit formulas for the lensing properites of each model are given in the companion
catalog of mass models ([Kee01a]).

20

Model Definition p[1] p[8] p[9] p[10]

nfw, nfwT (see eq. 3.36) κs rs – –

nfwpot (see eq. 3.38) κs rs – –

nfwcusp, nfwcuspT (see eq. 3.40) κs rs – γ

cusp, cuspT (see eq. 3.43) b rs n γ

nuker (see eq. 3.45) κb α β γ

unidisk κ =
{
q−1 κ0 if ξ < Rd
0 else

κ0 Rd – –

expdisk, expdiskT, expdiskA κ = q−1 κ0 exp [−ξ/Rd] κ0 Rd – –

kuzdisk κ = q−1 κ0 r
3
s

(
r2
s + ξ2

)−3/2
κ0 rs – –

Table 3.3 – More canonical lens models.

21

3.5 Appendix: Notes on the canonical models

This section offers technical details for some of the models in Table 3.2. See the catalog ([Kee01a])

for a full explanation of the models, including explicit formulas for their lensing properties.

Fourier modes: A general Fourier mode in the density can be written as κ = δκ cos(k · x +ϕ),

where δκ is the amplitude, k is the wavevector, and ϕ is the phase. In coordinates aligned with the

wavevector, this is just κ = δκ cos(kx+ϕ). In the code, the ellipticity and position angle parameters

are used to specify the amplitude and direction of the wavevector.

Multipole terms: In some cases it may be convenient to write the lens model using a multipole

series (e.g., [Koc02]). This can be done by combining a general monopole term with any number of

higher-order multipole terms. The general monopole model is defined in terms of the density,

κ(r) = 〈κ〉
(
r

R0

)1−n

, (3.18)

where the model is normalized by the mean density 〈κ〉 in an annulus from R1 to R2, and the scale

radius is taken to be the midpoint of the annulus, R0 = (R1 +R2)/2. A general multipole term can

be specified with the mpole model defined in terms of the potential,

φ(r, θ) = −εmr
n

m
cos
[
m
(
θ − θm −

π

2

)]
, (3.19)

where the orientation angle θm is written here as an observer’s position angle, i.e., measured East

of North. With n = 2 and m = 2 this is equivalent to an external shear term. In the code, the

amplitude εm and orientation angle θm are specified by the parameters p[4] and p[5].

A specific multipole term of interest is the shear arising from mass interior to the Einstein ring.

This intshr model is defined in terms of the potential,

φ(r, θ) =
b4 γint

2r2
cos 2(θ − θint) . (3.20)

The parameters γint and θint are specified by the shear parameters p[6] and p[7], but in two

different modes specified by the variable intshrmode. If intshrmode = 1 then p[6] = γint and

p[7] = θint. However, if intshrmode = 2 then the internal shear is specifed in relation to the total

shear. Specifically, p[6] = fint and p[7] = ∆θγ where

fint =
γint

γint + γext
, (3.21)

∆θγ = θint − θext , (3.22)

where “int” and “ext” refer to the internal and external shear, respectively.

External perturbations: Objects near the main lens galaxy or along the line of sight often

perturb the lensing potential. If the perturbation is weak it may be sufficient to expand the per-

turbing potential as a Taylor series and keep only a few terms. In a coordinate system centered on

22

the lens galaxy, the expansion to 3rd order can be written as (see [Koc91b]; [BF99])

φ ≈ φ0 + b · x +
r2

2

[
κ0 + γ cos 2(θ − θγ)

]
+ r3

[σ
4

sin(θ − θσ)− δ

6
sin 3(θ − θδ)

]
+ . . . (3.23)

(The direction angles (θγ , θσ, θδ) are written here as observers’ position angles, i.e., measured East

of North.) The 0th order term φ0 represents an unobservable zero point of the potential and can

be dropped. The 1st order term b · x represents an unobservable uniform deflection and can also

be dropped. The 2nd order term κ0 represents the convergence from the perturbing mass and is

equivalent to a uniform mass sheet with density Σ/Σcr = κ0. The only observable effect of this term

is to rescale the time delay(s) by 1−κ0, which leads to the “mass sheet degeneracy” (e.g., [FGS85]);

hence this term is often omitted from lens models and introduced a posteriori using independent

mass constraints (see, e.g., [BF99]). However, if desired you can include this term explicitly using

the convrg model class. The 2nd order term γ represents an external tidal shear with strength γ

and direction θγ ; you can include this term using the standard shear parameters (see §3.2). The

3rd order term σ arises from the gradient of the surface density κ(x) of the perturber; it has an

amplitude σ = |∇κ| and a direction equal to the direction of ∇κ. The 3rd order term δ arises from

the m = 3 multipole moment of the perturbing mass. To avoid an explosion of parameters, it may be

interesting to use a “restricted” 3rd order cluster with θδ = θσ and δ = −3σ/2, relations which are

exact for a singular isothermal sphere perturber and are probably reasonable for other perturbers

(see [BF99]; [KFI+00]). The clus3 model class implements this restricted 3rd order cluster. Note

that clus3 models use the parameters p[8] = σ and p[9] = θσ, so these two parameters are not scale

lengths.

The softened power law and related models (including the isothermal, α = −1, pseudo-

Jaffe, and King model ellipsoids) have a slightly different normalization in the code than in the

catalog. In the catalog the surface density for softened power law models is written as

κ(x, y) =
b2−α

2 (s2 + x2 + y2/q2)1−α/2 , (3.24)

while in the code it is written as

κ(x, y) =
(b′)2−α

2 [(s′)2 + (1− ε)x2 + (1 + ε)y2]1−α/2
, (3.25)

where ε is related to the axis ratio by q2 = (1 − ε)/(1 + ε). The only difference between the two

normalizations is in the b and s parameters; the two normalizations are related by

b′

b
=
s′

s
= q

√
2

1 + q2
. (3.26)

The boxypot model can have isopotential contours that are boxy or disky rather than pure

ellipses (see [CCRP01], [ZP01]). The parameter β controls the boxiness or diskiness, with β = 1/2

23

corresponding to strict elliptical symmetry. The parameter ε is related to the flattening of the

isopotential contours.

The two constants in de Vaucouleurs models are k = 7.66925001 and the normalization factor

N = 20160/k8

The Jaffe model [Jaf83] is a 3-d density distribution with the form

ρ =
ρs

(r/rs)2(1 + r/rs)2
, (3.27)

where rs is a scale length and ρs is a characteristic density. The projected surface mass density has

the form

κ(r) = κs

[
π

x
+ 2

1− (2− x2)F(x)
1− x2

]
, (3.28)

where x = r/rs, κs = ρs rs/Σcrit, and

F(x) =

1√
x2−1

tan−1
√
x2 − 1 (x > 1)

1√
1−x2 tanh−1

√
1− x2 (x < 1)

1 (x = 1)

(3.29)

A useful technical result is the derivative of this function:

F ′(x) =
1− x2F(x)
x(x2 − 1)

. (3.30)

The circular deflection is

circular: φ,r = 2κs rs [π − 2xF(x)] , (3.31)

where again x = r/rs. The code defines an elliptical model by using the surface mass density κ(ξ),

i.e. replacing the polar radius r with the ellipse coordinate ξ in eq. (3.28). The elliptical model

cannot be solved analytically.

The Hernquist model [Her90] is a 3-d density distribution proposed to describe the light

distribution of early-type galaxies. It has the form

ρ =
ρs

(r/rs)(1 + r/rs)3
, (3.32)

where rs is a scale length and ρs is a characteristic density. The projected surface mass density has

the form

κ(r) =
κs

(x2 − 1)2

[
−3 + (2 + x2)F(x)

]
, (3.33)

where x = r/rs, κs = ρs rs/Σcrit, and F is given by eq. (3.29). The circular deflection is

circular: φ,r = 2κs rs
x[1−F(x)]
x2 − 1

, (3.34)

where again x = r/rs. The code defines an elliptical model by using the surface mass density κ(ξ),

i.e. replacing the polar radius r with the ellipse coordinate ξ in eq. (3.33). The elliptical model

cannot be solved analytically.

24

The NFW model arises from cosmological N -body simulations (e.g., [NFW96]; [NFW97]) which

suggest that dark matter halos can be described by a “universal” density profile with the form

ρ =
ρs

(r/rs)(1 + r/rs)2
, (3.35)

where rs is a scale length and ρs is a characteristic density. [Bar96] gives the lensing properties of

the (spherical) NFW model. The projected surface mass density has the form

κ(r) = 2κs
1−F(x)
x2 − 1

, (3.36)

where x = r/rs, κs = ρs rs/Σcrit, and the F is given by eq. (3.29). The circular deflection is

circular: φ,r = 4κs rs
ln(x/2) + F(x)

x
, (3.37)

where again x = r/rs. The code defines an elliptical model by using the surface mass density

κ(ξ), i.e. replacing the polar radius r with the ellipse coordinate ξ in eq. (3.36). The elliptical model

cannot be solved analytically. As an alternative, the code also includes an NFW model with elliptical

symmetry in the potential,

φ = 2κ2 r
2
s

[
ln2 ξ

2
− arctanh2

√
1− ξ2

]
, (3.38)

which allows a fully analytic solution (see [GK02]; [MBM03]).

Some more recent simulations (e.g., [MGQ+98]; [MQG+99]) have suggested that the inner cusp

of the NFW profile is too shallow, so several studies ([JS00]; [WTS01]; [KM01]) have considered a

generalized NFW-type profile of the form

ρ =
ρs

(r/rs)γ(1 + r/rs)3−γ , (3.39)

where rs is a scale length. I call this a “cuspy NFW” model because it is like the NFW model

but has a central cusp ρ ∝ r−γ . The projected surface density cannot be computed analytically

even for a spherical halo. For a spherical model, the surface density and deflection can be written

as (see the catalog, [Kee01a])

κ(r) = 2κs rs x1−γ
[
(1 + x)γ−3 + (3− γ)

∫ 1

0

dy (y + x)γ−4
(

1−
√

1− y2
)]
, (3.40)

φ,r = 4κs rs x2−γ × (3.41){
1

3− γ 2F1[3− γ, 3− γ; 4− γ;−x] +
∫ 1

0

dy (y + x)γ−3 1−
√

1− y2

y

}
,

where x = r/rs, κs = ρs rs/Σcr, and 2F1 is the hypergeometric function. The catalog [Kee01a] gives

simple analytic expressions for γ = 0, 1, 2; [OLS03] give a fitting formula for κ for the case γ = 1.5.

25

Elliptical versions of the model are implemented in the code but can be time consuming because

they require double integrals.

To obtain a general cuspy model that is more amenable to lensing, [MnKK00] introduce a

model with a profile of the form

ρ =
ρs

(r/rs)γ [1 + (r/rs)2](n−γ)/2
, (3.42)

where again rs is a scale length. The density scales as ρ ∝ r−γ for r � rs, and ρ ∝ r−n for r � rs;

in other words, γ and n are the logarithmic slopes at small and large radii, respectively. This model

is a subset of the models whose physical properties were studied by [Zha96]. The central cusp must

have γ < 3 for the mass to be finite. For (γ, n) = (1, 4) this is a pseudo-Hernquist model, for (1, 3) it

is a pseudo-NFW model, and for (2, 4) it is a singular pseudo-Jaffe model. Compared with eq. (3.39),

replacing (1 + r/rs) with
√

1 + (r/rs)2 does not greatly change the profile shape but does make it

possible to solve the spherical model analytically ([MnKK00])

κ(r) = κsB

(
n− 1

2
,

1
2

) (
1 + x2

)(1−n)/2
2F1

[
n− 1

2
,
γ

2
;
n

2
;

1
1 + x2

]
, (3.43)

φ,r =
κsrs
x

{
2B
(
n− 3

2
,

3− γ
2

)
(3.44)

−B
(
n− 3

2
,

1
2

)(
1 + x2

)(3−n)/2
2F1

[
n− 3

2
,
γ

2
;
n

2
;

1
1 + x2

]}
,

where x = r/rs, κs = ρs rs/Σcr, 2F1 is the hypergeometric function, B(a, b) = Γ(a)Γ(b)/Γ(a +

b) is the Euler beta function, and eq. (3.44) is not valid for n = 3. See the catalog ([Kee01a])

for expressions for the case n = 3. The elliptical model κ(ξ) can be computed numerically with

eqs. (3.3)–(3.8). Note that in the software the mass parameter is specified as b = 2πκs.

Many early-type galaxies have surface brightness profiles that can be modeled as a Nuker law

([LAB+95]; [BGF+96]),

I(r) = 2(β−γ)/α Ib

(
r

rb

)−γ [
1 +

(
r

rb

)α](γ−β)/α

, (3.45)

where γ and β are inner and outer power law indices, respectively, rb is the radius where the break

in the power law occurs, α gives the sharpness of the break, and Ib is the surface brightness at the

break radius. If the luminosity distribution has circular symmetry and the mass-to-light ratio is Υ,

the lensing deflection is ([Kee02])

φ,r =
21+(β−γ)/α

2− γ
κb rb

(
r

rb

)1−γ

2F1

[
2− γ
α

,
β − γ
α

; 1 +
2− γ
α

;−
(
r

rb

)α]
, (3.46)

where κb = ΥIb/Σcr is the surface mass density at the break radius in units of the critical density for

lensing, and 2F1 is the hypergeometric function. If the stellar distribution has ellipsoidal symmetry,

26

the lensing deflection must be computed numerically. Note: At present the code does not have the

ability to specify all of the Nuker parameters, so all nuker models have rb = 1.

An exponential disk viewed in projection has elliptical symmetry, but the elliptical model

cannot be solved analytically. However, it can be approximated fairly well as a sum of Kuzmin disks

(see below),

κ = q−1 κ0 exp [−ξ/Rd] '
11∑
j=1

q−1 κj s
3
j

(
s2
j + ξ2

)−3/2
(3.47)

where the weights and scale lengths are given in Table 3.4. The code uses this approximate solution.

j κj/κ0 sj/Rd
1 0.008079 0.110297
2 −0.028496 0.156972
3 0.045732 0.239749
4 −0.027869 0.383171
5 0.287620 0.647549
6 −0.628801 1.030629
7 2.048180 1.599728
8 0.563387 2.553228
9 −1.415574 3.833604
10 0.042244 6.305107
11 0.105497 9.816998

Table 3.4 – Weights and scale lengths used for approximating an exponential disk as a sum of Kuzmin
disks.

27

Chapter 4

Basic Lensing Calculations: The gravlens Kernel

This chapter describes gravlens, which is not only a stand-alone application for basic lensing

calculations but also a kernel around which more sophisticated applications are built (e.g., lensmodel

in Chapter 6). In other words, the gravlens application provides the foundation for all of the

applications in the full gravlens package. Before reading this chapter, review the conventions of

the code and manual in §1.2.

The heart of the entire code package is a fully general algorithm for solving the lens equation. The

algorithm, described in the companion paper ([Kee01b]), involves tiling the image and source planes

and using the tiles to determine the number and approximate positions of all lensed images associated

with a given source. It requires no assumptions about the symmetry of the lensing potential, so it

can be used with aribtrarily complicated mass models. For (nearly) any calculation you must specify

the details of the tiling (§4.1) and the parameters of the mass model (§4.2). If your mass model

requires numerical integrals, you may wish to speed up the calculations by using interpolation tables

(§4.3). You can control the numerical solution of the lens equation (§4.4), including ways to handle

“catastrophic” images (§4.5). For applications that require an assumption about the cosmology,

you can specify cosmological parameters and the source and lens redshifts (§4.6). There are a few

more miscellaneous parameters (§4.7). After specifying the parameters that control how the code

operates, you can use the code to perform tests of its numerical accuracy (§4.8), to make plots

of lensing quantities (§4.9), and to perform simple lensing calculations like determining the lensed

images of a given sources or computing microlensing light curves (§4.10). Step-by-step examples are

given in §4.11.

4.1 Specifying the tiling

The first task is to specify the tiling of the image and source planes. The code lays down a polar

grid in the image plane centered on the main lens galaxy. It takes the points to be vertices of the

image plane tiles, and then maps these to the source plane. You can use a set of variables to specify

28

the properties of the image plane grid. You can also select between two gridding modes based on

what knowledge you have of the morphology of the critical curves.

4.1.1 Variables

rscale [1.0] Radial scale of image plane grid. Used mainly in the lensmodel application
(see §6.2).

gridlo1 [0.0],
gridhi1 [2.0]

Radial extent of image plane grid: lower and upper limits (in units of
rscale, see §6.2).

gridlo2 [0.0],
gridhi2 [360.0]

Angular extent of image plane grid: lower and upper limits (as astronom-
ical position angles, measured in degrees East of North).

ngrid1 [20],
ngrid2 [20]

Dimensions of the top grid, in radius and angle.

nsubg1 [2],
nsubg2 [2]

Dimensions of each subgrid, in radius and angle.

gridflag [1] Flag for whether or not to compute the grid. (A few calculations do not
require the grid, so omitting it saves time.)

checkgaps [1] Flag for whether to look for images in the gaps in the source plane (see
the companion paper [Kee01b], especially Figure 4). Checking the gaps
requires 2× 2 subgrids.

maxlev [3] Maximum level of subgrid recursion near critical lines. The top grid is
level 1, the first subgrid is level 2, and so on.

gallev [3] Maximum level of subgrid recursion near galaxies other than the primary
lens galaxy.

imglev [3] Maximum level of subgrid recursion near images. Valid only when not
using the catalog option (see below).

crittol [1.0e-6] Tolerance for finding critical curves.

4.1.2 Commands

gridmode 〈mode〉
Specifies the type of tiling to use (see below). The default is a standard polar grid (mode

1).

autogrid [mode] [µmax]

Automatically sets the grid range to encompass the full multiply-imaged region. Finds the

critical radii and caustics, then sets gridhi1 to be the radius of the smallest circle in the

image plane where everything is singly-imaged. Uses the specified grid parameters, subject

to the mode argument: (1) linear spacing for finding critical radii and for final grid; (2)

logarithmic spacing for finding critical radii, but linear spacing for final grid; (3) logarithmic

29

spacing for finding critical radii and for final grid. If the optional µmax argument is set, it

finds the smallest circle where all images have magnification µ < µmax.

4.1.3 Discussion

The code always uses a polar grid centered on the main lens galaxy. The default values of the range

and resolution variables were chosen to work for most simple calculations, but you may want to

change them depending on your problem. Note that if you use a singular lens model such as a point

mass, you must explicitly set gridlo1 to be non-zero in order to avoid the central singularity. (This

is not a problem with other “singular” lens models because the code automatically imposes a small

but finite core radius.) The code offers two modes for determining where to put grid zones:

• gridmode 1: A standard polar grid, with zones spaced equally in radius and angle. Recursive

sub-gridding is used to increase the resolution near the critical lines. A sample standard grid

with two levels of sub-gridding is shown in Figure 4.1. (Note that the critical curves are found

within tolerance crittol only when they are plotted with plotcrit, see §4.9.)

• gridmode 2: A “critical curve” grid, in which the critical curves are used to determine where to

place the radial zones. This mode is useful if you need very good resolution of the critical curves

and you know that they have a relatively simple morphology. Suppose you know that there are

two critical curves, a tangential critical curve rtan(θ) and a radial critical curve rrad(θ), and

each curve is a simple loop with only one value of r for every θ. At each angle θ, the code uses

numerical root finding to determine rrad(θ) and rtan(θ) within tolerance crittol. It then uses

a set of radial zones equally spaced between gridlo1 and rrad(θ), another set between rrad(θ)

and rtan(θ), and a third set between rtan(θ) and gridhi1. The cost is the extra computation

for the numerical root finding, but the benefit is much better resolution near the critical curves

without sub-gridding. A sample “critical curve” grid is shown in Figure 4.1.

The code uses recursive sub-gridding to increase the resolution near important locations. There

are two types of important locations. One is near the critical curves, because that is where the

lens mapping folds over on itself (see the companion paper [Kee01b], especially Figure 3). The code

generates a subgrid in any tile that contains a critical curve (where the magnification µ changes sign

across the tile), to a maximum depth given by maxlev. The other important location is near any

galaxy other than the main lens galaxy, because the extra galaxy may have its own critical curves

that need to be resolved. The code generates a subgrid in any tile that contains a galaxy other than

the main lens galaxy, to a maximum depth given by gallev. (The top grid is a polar grid centered

on the main lens galaxy, so its core is automatically well resolved.) The dimensions of each subgrid

are given by nsubg1 and nsubg2; you should probably leave these at the default values (nsubg1 =

30

Figure 4.1 – Sample image plane grids. The light lines indicate the grid, while the heavy curves
indicate the critical curves. Left: a standard polar grid with two levels of sub-gridding to increase
the resolution near the critical curves. Right: an equivalent “critical curve” grid in which the code
uses the critical curves to determine the locations of the radial grid zones.

nsubg2 = 2), because that allows the code to handle gaps in the source plane grid created by the

sub-gridding (see the companion paper [Kee01b], §3).

The code can also use sub-gridding to increase the resolution in regions that it searches for

images, to prevent the (unlikely) situation of having two images within a single tile. The variable

imglev gives the maximum depth of the grid near images. Note that sub-gridding near images works

only when you are not using the source catalog to find images (see §4.4). (When the catalog is used,

once the catalog is generated it cannot be modified to add subgrids.)

The autogrid command is useful when examining lens models with very different scales, because

it ensures that the grid covers the full multiply-imaged region. That way you don’t have to know a

priori the size of the critical curves and caustics.

4.1.4 Examples

The following commands specify the standard polar grid in Figure 4.1.

gridmode 1

set ngrid1 = 15

set ngrid2 = 25

set maxlev = 3

startup 1 1

alpha 1.4 0.0 0.0 0.3 10.0 0.1 -12.1 0.2 0.0 1.0

31

0 0 0 0 0 0 0 0 0 0

plotcrit mode1.crit

plotgrid mode1.grid

The following commands specify the “critical curve” grid in Figure 4.1.

gridmode 2

set ngrid1 = 5

set ngrid2 = 25

set maxlev = 1

startup 1 1

alpha 1.4 0.0 0.0 0.3 10.0 0.1 -12.1 0.2 0.0 1.0

0 0 0 0 0 0 0 0 0 0

plotcrit mode2.crit

plotgrid mode2.grid

4.2 Specifying the mass model

4.2.1 Variables

NGALMAX [20] Maximum number of galaxies allowed in a single model.

galcoords [1] Whether to use Cartesian (1) or polar (2) coordinates for galaxy positions.
The position of the main lens galaxy is always given in Cartesian coordi-
nates. Polar coordinates for any remaining galaxies are centered on the
main lens galaxy.

shrcoords [2] Whether to use Cartesian (1) or polar (2) coordinates for angular structure
parameters (shear and ellipticity). The polar angle is not quite standard,
as explained below.

intshrmode [1] Specifies the mode in which the internal shear terms are defined (see §3.5)

potflag [1] Flag for whether or not to compute the lensing potential.

nobflip [0] Used only in the lensmodel application to control how the b parameter
behaves in lens modeling (see §6.5).

maxshear [1.0] Maximum allowed value of the external shear; used mainly in the
lensmodel application to prevent the shear from becoming unphysically
large.

4.2.2 Commands

startup 〈# gals per mass model〉 〈# of mass models〉
Allows you to specify the mass model(s) by giving the number of models, the number of

galaxies in each model, and the parameters for all the galaxies.

32

startup 〈name of startup file〉
Allows you to specify the mass models(s) from a file.

listmodels

Lists and explains all mass models defined in the code.

4.2.3 Discussion

As discussed in Chapter 3, the code uses composite models made up of multiple “galaxies.” Each

galaxy is represented by one of the canonical models and is specified by up to 10 parameters. Thus

a complete specification of a mass model includes the number of galaxies (Ngal) together with the

parameters for each galaxy. The maximum number of galaxies you can use in a single model is

specified by the variable NGALMAX.

For generality, startup allows you to specify more than one mass model, for example to feed

several initial models into an optimization routine; the only command in gravlens that uses more

than one of the startup models is checkmod. (§6.6 discusses how lensmodel uses the additional

models.)

The startup command is structured as follows:

> startup <Ngal> <Nmod>

<model type for model #1, galaxy #1> <10 params for this galaxy>

<model type for model #1, galaxy #2> <10 params for this galaxy>

...

<model type for model #2, galaxy #1> <10 params for this galaxy>

<model type for model #2, galaxy #2> <10 params for this galaxy>

...

<flags; see below>

See §3.2 and Table 3.2 for a summary of the canonical models and the parameters they use. See

below for some examples. Note that some of the canonical models do not use all 10 parameters, but

you must still give all 10. The flags mentioned here are included for the sake of the lensmodel

application; they consist of a string of integers (0 or 1) which specify whether a particular parameter

is allowed to vary when fitting a model to an observed lens (see §6.1). For gravlens runs they are

not used, but they must be included.

As an alternative, you can place the mass model specification in a file and read it with the

command

> startup <file>

Here the startup file must contain the following:

33

<Ngal> <Nmod>

<model type for model #1, galaxy #1> <10 params for this galaxy>

<model type for model #1, galaxy #2> <10 params for this galaxy>

...

<model type for model #2, galaxy #1> <10 params for this galaxy>

<model type for model #2, galaxy #2> <10 params for this galaxy>

...

<flags as above>

Calling startup not only specifies the mass model, it also produces the initial tiling of the image

and source planes. Hence any variables that affect the tiling should be modified only before calling

startup; see §4.1.

The position of the main lens galaxy is always given in Cartesian coordinates. The positions of

any remaining galaxies, however, can be given either in Cartesian coordinates or on polar coordinates

centered on the main lens galaxy. Use the galcoords flag to choose the coordinates.

The angular structure (ellipticity and shear) parameters can be given either in Cartesian coordi-

nates or (modified) polar coordinates. For the ellipticity, the Cartesian coordinates (ec, es) and the

polar coordinates (e, θe) are related by

ec = e cos 2θe (4.1)

es = e sin 2θe (4.2)

There are similar relations for the shear parameters (γc, γs) and (γ, θγ). The factor of 2 means that

the angle is not a standard polar angle, but it is inserted so that the shear angle θγ points toward

the mass concentration producing the shear.

The variable potflag specifies whether or not to compute the lensing potential φ. Often com-

puting φ requires evaluating a numerical integral even for models with an analytic deflection (see

Chapter 3). Many lensing calculations do not require the potential itself, so setting potflag=0 can

save calculation time. Note that you must set potflag=1 if you want to compute lensing time delays.

4.2.4 Examples

To specify a model that has a single galaxy represented by a singular isothermal ellipsoid with

ellipticity e = 0.4 and PA = 78.1◦ you would use:

> startup 1 1

alpha 1.1 -0.3 0.2 0.4 78.1 0.0 0.0 0.0 0.0 1.0

0 0 0 0 0 0 0 0 0 0

If the model requires not only that galaxy but also a nearby cluster with an NFW profile, you might

use:

34

> set galcoords = 1

> startup 2 1

alpha 1.1 -0.3 0.2 0.4 78.1 0.0 0.0 0.0 0.0 1.0

nfw 0.6 10.9 1.6 0.0 0.0 0.0 0.0 6.8 0.0 0.0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

You could also put this information in an input file. For example, you could create foo.start

containing

2 1

alpha 1.1 -0.3 0.2 0.4 78.1 0.0 0.0 0.0 0.0 1.0

nfw 0.6 10.9 1.6 0.0 0.0 0.0 0.0 6.8 0.0 0.0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

and then load this file with the command

> set galcoords = 1

> startup foo.start

4.3 Using tabulated models

For mass models that do not have analytic solutions, the code can compute the lensing properties

using numerical integrals (see Chapter 3). Because this can be time-consuming, the code offers

the ability to tabulate the numerical solutions and then interpolate in them to obtain much faster

approximate solutions. This section discusses how to use tabulated models; a sample run in §4.11

illustrates the technique and shows how to check the accuracy of the interpolated solutions.

4.3.1 Variables

(None.)

4.3.2 Commands

maketab 〈file〉 〈e lo〉 〈hi〉 〈steps〉 〈r lo〉 〈hi〉 〈steps〉 〈θ steps〉
Compute the lensing properites on the specified grid of ellipticity, radius, and angle, and

write them to the specified file. The output file is a binary file.

loadtab 〈file〉
Load lensing properties tabulated with the maketab command.

35

4.3.3 Discussion

The implementation of tabulated models rests on two assumptions:

• The mass model has a single scale length s so that the surface mass density has the form

κ(x, y; s) = κ(x/s, y/s). Then in general the potential has the form φ(x, y; s) = s2 f(x/s, y/s).

This makes it possible to tabulate the lensing properites for a single value s and then trivially

rescale to any other value s′:

φ(x, y; s′) = φ
(xs
s′
,
ys

s′
; s
)
×
(
s′

s

)2

φ,i(x, y; s′) = φ,i

(xs
s′
,
ys

s′
; s
)
×
(
s′

s

)
φ,ij(x, y; s′) = φ,ij

(xs
s′
,
ys

s′
; s
)

(4.3)

• The surface mass density scales linearly with a mass parameter M so that κ(x, y;M) =

Mκ̄(x, y). Then all of the lensing properties also scale linearly with M, so it is possible to

tabulate them for a single value M and then rescale to any other value M′.

With these scalings plus the ability to arbitrarily translate and rotate the model, we can obtain full

generality by tabulating the lensing properties as functions of position and ellipticity only. (This

breaks down for models with two scale lengths, but so far I have not encountered any models with

two scale lengths that need numerical solutions.)

The maketab command tabulates the lensing properties on a grid of ellipticities and a polar grid

of positions and saves the results in a binary file. Both grids can be made either linear or logarithmic;

my beta testers recommend using linear grids in ellipticity and polar angle, and a logarithmic radial

grid. The loadtab command reads the properties from a file written with maketab and prepares to

use them for interpolation.

There are two ways to use the tabulated results. The code offers a general tab model class, for

which it interpolates in the lensing properties that were loaded with the first loadtab command.

The code also offers special “tabulated” model classes for some of the models (namely alphaT, nfwT,

cuspT, and devaucT; see Table 3.2 for definitions). The two approaches are roughly equivalent, with

the following caveats:

• You must use the alphaT and devaucT model classes for tabulated softened power-law and de

Vaucouleurs models, respectively, because their scaling is a little different from eq. (4.3) above.

• You must use the special model classes if you use more than one tabulated model at a time,

so the code selects properly among the tabulated models you have loaded.

36

Except for these exceptions, the tab model class is general and thus useful for using tabulated results

with models other than those specially defined in the code.

Note that the tabulated model results must be loaded before any startup command that uses

tabulated models.

4.3.4 Examples

Here is an example of a how to produce the tabulated results for a de Vaucouleurs model:

startup 1 1

devauc 1.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 1.0

0 0 0 0 0 0 0 0 0 0

maketab devauc.tab 0.0 0.1 3 0.01 10.0 -101 101

Here is how you would specify to use the tabulated results:

loadtab devauc.tab

startup 1 1

devaucT 5.2 0.1 -0.3 0.05 40.0 0.0 0.0 4.0 0.0 0.0

0 0 0 0 0 0 0 0 0 0

An sample run in §4.11 shows how you could check the accuracy of the lensing properties interpolated

from the tabulated results.

Here is how you could use the general tab model class with an NFW model. First tabulate the

NFW model results:

startup 1 1

nfw 1.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 1.0

0 0 0 0 0 0 0 0 0 0

maketab nfw.tab 0.0 0.2 5 0.01 10.0 -101 101

Now load and use the tabulated results:

loadtab nfw.tab

startup 1 1

tab 6.1 -1.8 0.9 0.15 -31.8 0.0 0.0 3.1 0.0 0.0

0 0 0 0 0 0 0 0 0 0

(Once again, you cannot use the tab model class with softened power law or de Vaucouleurs models

because they have non-standard scalings.)

You can use multiple tabulated models at the same time, but you must use the specially defined

model classes so the code knows which set of tabulated results to use for each model. Suppose you

tabulated de Vaucouleurs and NFW results as above. You could use them together as follows:

37

loadtab devauc.tab

loadtab nfw.tab

startup 2 1

devaucT 5.2 0.1 -0.3 0.05 40.0 0.0 0.0 4.0 0.0 0.0

nfwT 6.1 -1.8 0.9 0.15 -31.8 0.0 0.0 3.1 0.0 0.0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

4.4 Solving the lens equation

4.4.1 Variables

xtol [1.0e-6] Tolerance on image positions in numerical root finding.

catalog [0] Flag for whether to use a catalog of source tiles.

4.4.2 Commands

(None.)

4.4.3 Discussion

The code uses the tilings of the image and source planes to make sure it finds all of the images of

a given source u; see the companion paper ([Kee01b]). There are two ways of searching the source

plane tiling to find all of the tiles that cover u:

• catalog=0: For each source position u, the code searches the entire source plane tiling to look

for the tiles that cover u.

• catalog=1: Before searching for any images, the code first scans the source plane tiling and

builds a catalog indicating which tiles cover which source positions. It can then use the catalog

to quickly find the tiles that cover any given source position u.

The cost of using the catalog is the time required to build it, but the benefit is the ability to solve

the lens equation without searching the entire tiling for every source. The time to build the catalog

is comparable to the time to search the entire tiling a few times. Thus, if only a few source positions

are examined for a given lens model (such as when you model an observed lens with a single source),

using the catalog might slow you down. If, however, a large number of sources positions must be

examined for each lens model (such as when you compute microlensing light curves, lensing cross

sections, and so forth), using the catalog will be much faster.

Once it identifies the tiles containing images, the code uses a 2-d numerical root finder to solve

the lens equation and find the image positions x corresponding to a given source position. The xtol

38

variable specifies the position tolerance in the root finder. The numerical algorithm is relatively

efficient, so using a small tolerance (such as 10−6) does not require excessive computation time.

4.5 Handling catastrophic images

4.5.1 Variables

omitcore [0.0] Size of omitted regions around galaxies.

omitcrit [500.0] Magnification of omitted band around critical curves.

4.5.2 Commands

(None.)

4.5.3 Discussion

The code uses a recursive tiling scheme to obtain good resolution near important regions of the lens

mapping (see the companion paper, [Kee01b]), but even so the resolution is always finite. This fact

can cause the code to have trouble with two types of images that lie near critical curves.

The first troublesome images are those in the cores of lens galaxies. A general theorem states

that any smooth mass distribution must have an odd number of images (see [SEF92], §5.4). In most

cases, however, one of the images lies near the high-density core of the lens galaxy and is highly

demagnified, which explains why observed lenses usually have just two or four images (see [RM01]

for a recent analysis). In the code, the only mass model not susceptible to the odd-image theorem

is a point mass (see Chapter 3); for isothermal and related power law models, the code imposes a

small but finite core radius to keep things well-behaved. As a result, in its default mode the code

always looks for and uses the faint “core” image(s). The finite resolution of the tiling can cause the

code to get hung up and waste a lot of time trying to pin down such images. If you get a lot of

warning messages about a “non-converged image,” this might be the problem.

You often don’t care about core images because they are so rarely observed, and it is a shame

to waste run time on something that is irrelevant. So the code offers a way to exclude core images

from consideration. The variable omitcore tells the code to create a small region around the core

of each lens galaxy that is never searched for images. In other words, the code simply ignores any

model images within omitcore of a galaxy. (This variable also affects the behavior of lensmodel

by telling the code to ignore “observed” core images; see §6.2.)

The other troublesome images are phantom images near critical curves. The finite resolution

of the tiling means that the folding of the image plane at fold caustics is not perfectly resolved.

This can lead the tiling algorithm to mistakenly think that there is (at least one) image extremely

39

Figure 4.2 – An explanation of phantom images. The light lines are portions of tilings, the heavy
lines are portions of critical curves, and the cross in the source plane is a sample source. With
a low-resolution tiling (left), the fold causes the source plane tiles to overlap, and both of them
cover the sample source. Hence the tiling algorithm thinks that there should be two images near
the critical curve. With a higher-resolution tiling (right), the fold is much better resolved and the
putative images are revealed to be phantoms.

close to a critical curve, when indeed there is none; see Figure 4.2 for an explanation. The code

then wastes time searching for a phantom image, only to decide that it does not exist. (This is

the other situation that produces a warning about a “non-converged image.”) Because phantom

images always occur very close to a critical curve, the code defines a thin, high-magnification band

around each critical curve that is never searched for images. The variable omitcrit specifies the

magnification threshold: the code does not search regions of the image plane where the magnifiation

is higher than omitcrit.

40

4.6 Specifying the cosmology

4.6.1 Variables

omega [1.0],
lambda [0.0]

Cosmological parameters ΩM and ΩΛ.

hval [1.0],
hvale [0.1]

Hubble constant and its uncertainty, in terms of the parameter h =
H0/(100 km s−1Mpc−1).

zlens [-1],
zsrc [-1]

The lens and source redshifts, which are used to compute the cosmology-
dependent time delay factor t0. A negative value means that the redshift
is not specified.

tscale [1.0] The cosmology-dependent time delay factor t0 (see eq. 24 in [Kee01b]).
Supersedes zlens and zsrc.

4.6.2 Commands

(None.)

4.6.3 Discussion

At present the cosmology information is used only to compute time delays. In gravlens, time delays

are used only in plottdel (see §4.9); they are used more extensively in lensmodel (see Chapters 5

and 6).

4.7 Miscellaneous

4.7.1 Variables

seed [-15] Seed for the random number generator. It should be a negative integer.

maxrgstr [5] Maximum number of registration definitions. Used in lensmodel, but not
used in gravlens (see §6.3).

inttol [1.0e-6] Tolerance for numerical integrals. It is a relative (absolute) error tolerance
— per step in the integration variable — for quantities greater than (less
than) unity.

4.7.2 Commands

version

Displays the current version of the software.

41

4.8 Checking the code

4.8.1 Variables

(None.)

4.8.2 Commands

checkder 〈outbase〉 〈rmin〉 〈rmax 〉 〈Nsamp〉 [h]

Uses numerical derivatives to test whether the potential, deflection, and magnification of

a model are self-consistent. The code picks Nsamp random points in an annulus between

radii rmin and rmax (centered on the main lens galaxy). To test point (x, y) it compares the

model deflection φ,x(x, y) with the numerical derivative [φ(x+h/2, y)−φ(x−h/2, y)]/h, plus

analogous techniques for φ,y and the magnification components φ,ij . It writes the results

to the file outbase.dat, including the absolute and relative errors for φ,i and φ,ij . It then

summarizes the results into error histograms (fraction of points versus log(err)) and writes

the histograms to outbase.abs and outbase.rel. There are histograms for each component

φ,i and φ,ij , and for the average over all six components. Finally, the code makes a crude

text plot to show you the average histograms.

checkmod 〈outbase〉 〈rmin〉 〈rmax 〉 〈Nsamp〉

Similar to checkder, except that it checks the potential, deflection, and magnification for

one model against another model. Used to check whether two models have the same lensing

properties, for example to test the accuracy of interpolated lensing properties (see maketab

and loadtab) against the numerical integrals. The output is the same as checkder. (An

example is given in §4.11.)

checkmag 〈outname〉 〈δu lo〉 〈hi〉 〈steps〉

Solves the lens equation and checks the total magnification against an analytic solution.

Used to test how well the code performs near a cusp. If the cusp is at position uc, the code

checks sources at uc ± δu for the specified range of δu. The output is written to the file

outname. Full analytic solutions exist only for SIS+shear or ptmass+shear lens models with

the shear along the axes.

4.9 Making pictures

4.9.1 Variables

(None.)

42

4.9.2 Commands

plotgrid 〈file〉 [mode]

Writes image and source plane grids to the specified file. Comments at the top of the file

explain how to plot the grids. The mode flag indicates whether to show quadrilaterals (1)

or triangles (2). The tiling algorithm lays down quadrilaterals and breaks each into two

triangles because triangles are the only polygons that are guaranteed to remain convex

when mapped from the image plane to the source plane; see the companion paper [Kee01b].

Plotting the quadrilaterals shows essentially all of the grid information with less clutter than

the triangles. Most of the figures in this manual show just the quadrilaterals.

plotcrit 〈file〉
Writes critical curves and caustics to the specified file. Comments at the top of the file

explain how to plot the critical lines. The code uses an algorithm to connect the dots in a

way that should work even for critical curves with complicated morphologies, for example

multiple galaxies with disjoint critical curves. (Basically, the code tries to connect near-

est neighbor points on the critical curves, and maps the critical curve connections to the

caustics.) However, the algorithm is not fool-proof, and you may occasionally get bizarre

results. These will be obvious by having connections between points that clearly should not

be connected.

plotkappa 〈file〉 〈file type〉 〈x lo〉 〈hi〉 〈steps〉 〈y lo〉 〈hi〉 〈steps〉
Plots a κ map. The file type is as follows: (1) plain text; (2) binary; (3) FITS.

plotdef0 〈file〉 〈r lo〉 〈hi〉 〈steps〉 〈θ steps〉
Plots the monopole deflection versus radius. It uses the specified number of θ steps to

compute the average over azimuth.

plotdef1 〈file〉 〈x lo〉 〈hi〉 〈steps〉 〈y lo〉 〈hi〉 〈steps〉
Computes the lensing properties (potential, deflection, and magnification) on the specified

Cartesian grid and writes them to a file for plotting. The output file begins with the limits

of the grid, followed by a list of (x; y;φ;φ,x;φ,y;φ,xx;φ,yy;φ,xy;φ,yx) for each point. In this

list, the x loop is outside the y loop:

for (ix=1;ix<=nx;ix++) { for (iy=1;iy<=ny;iy++) { <ix,iy> } }

plotdef2 〈file〉 〈θ lo〉 〈hi〉 〈steps〉 〈r lo〉 〈hi〉 〈steps〉
The same as plotdef1, except on a polar grid. The output is still φ,x and φ,y, etc. (as

opposed to φ,r and φ,θ), but the quantities are computed at particular values of (r, θ) rather

than (x, y). In the output file the θ loop is outside the r loop:

for (ith=1;ith<=nth;ith++) { for (ir=1;ir<=nr;ir++) { <ith,ir> } }

43

plottdel 〈file〉 〈src u〉 〈src v〉 〈x lo〉 〈hi〉 〈steps〉 〈y lo〉 〈hi〉 〈steps〉
Similar to plotdef1, but also computes the time delay surface for the specified source

position. If tscale is set (see §4.6), the delays are given in units if h−1 days, assuming

image positions in arcseconds. If tscale is not set, the delays are given in units of the time

delay scale t0.

plotmag 〈file〉 〈u lo〉 〈hi〉 〈steps〉 〈v lo〉 〈hi〉 〈steps〉
Plots the number of images and the total magnification (for a point source) as a function of

the source position (u, v). In the output file the u loop is outside the v loop:

for (iu=1;iu<=nu;iu++) { for (iv=1;iv<=nv;iv++) { <iu,iv> } }

4.10 Simple lensing calculations

4.10.1 Variables

(None.)

4.10.2 Commands

calcRein [mode] [file]

Computes Einstein radii for spherical models. Mode 0 means use the startup model (de-

fault). Mode N means use a parameter grid with N dimensions; after the calcRein com-

mand you must give igal, iparm, lo, hi, and steps the each axis of the parameter grid.

Writes results to the specified file (or to the screen as a default.

findimg 〈u〉 〈v〉
Finds locations and magnifications of all images corresponding to a (point) source at position

(u, v).

findimg2 〈u lo〉 〈hi〉 〈steps〉 〈v lo〉 〈hi〉 〈steps〉 〈outname〉
Finds the images corresponding to (point) sources on the specified Cartesian grid.

findimg3 〈inname〉 〈outname〉
Finds the images corresponding to (point) sources listed in the input file.

findsrc 〈x〉 〈y〉
Finds the source corresponding to an image at (x, y), then finds all the sister images corre-

sponding to that source.

ellsrc 〈file〉 〈u0〉 〈v0〉 〈e〉 〈PA〉 〈a lo〉 〈hi〉 〈steps〉 〈θ steps〉
Places ellipses in the source plane and maps them to the image plane. The ellipses are

centered at (u0, v0) and have ellipticity e and orientation PA. Ellipses are plotted with the

specified range of semi-major axis a, using the specified number of angular steps. Comments

at the top of the file explain how to plot the images.

44

ellimg 〈file〉 〈x0〉 〈y0〉 〈e〉 〈PA〉 〈a lo〉 〈hi〉 〈steps〉 〈θ steps〉

Places ellipses in the image plane, maps them to the source plane, and then finds all the

images of those sources. The initial image plane ellipses are centered at (x0, y0) and have

ellipticity e and orientation PA. Ellipses are plotted with the specified range of semi-major

axis a, using the specified number of angular steps. Comments at the top of the file explain

how to plot the images. NOTE: Compare the ellsrc/ellimg pair to the findsrc/findimg

pair. One command of each pair places objects in the source plane and maps them to the

image plane, while the other places objects in the image plane, maps backwards to the source

plane, and then maps forewards to the image plane again to find sister images. However,

the ellsrc/ellimg pair is reversed relative to the findsrc/findimg pair.

SBmap1 〈inname〉 〈intype〉 〈u lo〉 〈hi〉 〈v lo〉 〈hi〉 〈outname〉 〈outtype〉 〈x lo〉 〈hi〉 〈steps〉 〈y lo〉 〈hi〉
〈steps〉

Reads a surface brightness map from the specified input file, puts it in the specified region

of the source plane, then lenses it. The units are preserved.

SBmap2 〈x lo〉 〈hi〉 〈steps〉 〈y lo〉 〈hi〉 〈steps〉 〈outname〉 〈outtype〉 〈Nsrc〉 [inname]

Generates a lensed surface brightness map from an array of analytic sources. The resulting

map has units of L� arcsec−2 (or something equivalent), so to compute the integrated flux

you would sum the pixels and multiply by the area of each pixel.

magtensor 〈x〉 〈y〉

Computes the magnification tensor at the specified point.

mock1 〈outname〉 〈number of sources〉 [minimum number of images] [bias mode] [ν] [Rmax]

Generates mock lenses by picking random sources and solving the lens equation. Uses

the specified number of sources. The sources are distributed uniformly in the smallest

circle circumscribing the caustics. The optional 3rd argument can be used to specify the

minimum number of images required for a lens to be stored. The optional 4th and 5th

arguments refer to the calculation of magnification bias (use help mock1 for details). The

optional 6th argument can be used to override the size of the search circle in the source

plane.

mock2 〈outname〉 〈density of sources〉 [minimum number of images]

Similar to mock1, but uses the specified density of sources.

lightcrv 〈file〉 〈u1〉 〈v1〉 〈u2〉 〈v2〉 〈# steps〉

Computes the microlensing light curve (for a point source) as the source traverses the line

from (u1, v1) to (u2, v2) in the specified number of steps. Writes the results to the specified

file.

45

4.11 Sample runs

Here is a simple example of a run that defines a model with a singular isolated ellipsoid with mass

parameter b = 1, centered at (0.1, 0.2), with ellipticity e = 0.1 and PA = 30◦. The run plots

some lensing properties, then finds some images, and finally computes a light curve. This example

illustrates running the code interactively.

unixprompt% gravlens

Creating rscale = 1.000000e+00 [Sets radial scale of grid]

Creating gridlo1 = 0.000000e+00 [Grid radius: lower limit (units of rscale)]

Creating gridhi1 = 2.000000e+00 [Grid radius: upper limit (units of rscale)]

Creating gridlo2 = 0.000000e+00 [Grid angle: lower limit]

Creating gridhi2 = 3.600000e+02 [Grid angle: upper limit]

Creating ngrid1 = 2.000000e+01 [dimension of top grid (radius)]

Creating ngrid2 = 2.000000e+01 [dimension of top grid (angle)]

Creating nsubg1 = 2.000000e+00 [dimension of sub grid (radius)]

Creating nsubg2 = 2.000000e+00 [dimension of sub grid (angle)]

Creating gridflag = 1.000000e+00 [Flag for whether to compute grid]

Creating omitcore = 0.000000e+00 [Size of omitted region around galaxies]

Creating omitcrit = 5.000000e+02 [Magnification of omitted band around crit crv]

Creating checkgaps = 1.000000e+00 [Flag for checking gaps in source plane grid]

Creating maxlev = 3.000000e+00 [Deepest level of subgrid recursion]

Creating gallev = 3.000000e+00 [Deepest level of subgrid near galaxies]

Creating crittol = 1.000000e-06 [Tolerance for finding critical curves]

Creating galcoords = 2.000000e+00 [1->cartesian, 2->polar]

Creating shrcoords = 2.000000e+00 [1->cartesian, 2->polar]

Creating maxrgstr = 5.000000e+00 [Maximum number of registration definitions]

Creating potflag = 1.000000e+00 [Compute lensing potential?]

Creating xtol = 1.000000e-06 [Tolerance for src2img]

Creating inttol = 1.000000e-06 [Tolerance for numerical integrals]

Creating catalog = 1.000000e+00 [Flag for using catalog of source tiles]

Creating seed = -1.500000e+01 [Seed for randum number generator]

Creating omega = 1.000000e+00 [Matter density Omega_Matter]

Creating lambda = 0.000000e+00 [Cosmological constant Omega_Lambda]

Creating hval = 1.000000e+00 [H_0 in units of 100 km/s/Mpc]

Creating hvale = 1.000000e-01 [Uncertainty in H_0 in units of 100 km/s/Mpc]

Creating tscale = 1.000000e+00 [The cosmology-dependent time delay factor]

Creating zlens = -1.000000e+00 [The lens redshift]

Creating zsrc = -1.000000e+00 [The source redshift]

> gridmode 2

Setting maxlev = 1.000000e+00

> startup 1 1

Enter galaxies for model #1:

alpha 1.0 0.1 0.2 0.2 30.0 0.0 0.0 0.0 0.0 1.0

46

Enter what to vary for each galaxy:

0 0 0 0 0 0 0 0 0 0

Note: looking for 2 critical lines.

> plotgrid foo.grid

Writing grid to foo.grid

> plotcrit foo.crit

Writing critical curves and caustics to foo.crit

> plotdef1 foo.def1 -1.0 1.0 21 -1.0 1.0 21

Writing lensing properties to foo.def1

> plotdef2 foo.def2 0.0 90.0 3 0.0 2.0 21

Writing lensing properties to foo.def2

> findimg 0.25 0.10

Source u = 2.500000e-01, v = 1.000000e-01

Found 3 images with positions and magnifications:

9.996830e-02 2.000251e-01 4.633074e-08

-4.573846e-01 7.733234e-01 -2.550845e+00

1.263745e+00 -3.215508e-03 5.898054e+00

> findimg 0.15 0.20

Source u = 1.500000e-01, v = 2.000000e-01

Found 5 images with positions and magnifications:

9.999041e-02 2.000010e-01 4.090783e-08

-5.481404e-01 8.822342e-01 -5.416573e+00

2.850334e-01 -7.716133e-01 -9.012801e+00

-6.117861e-01 -5.108209e-01 1.124872e+01

1.110033e+00 6.125100e-01 5.976329e+00

> lightcrv foo.lcrv -0.2 -0.6 0.4 0.3 100

Writing lightcrv to foo.lcrv

Step 0

Step 10

Step 20

Step 30

Step 40

Step 50

Step 60

Step 70

Step 80

Step 90

Step 100

> quit

unixprompt%

Alternatively, you could put all of the commands into an input file, for example foo.in containing:

gridmode 2

startup 1 1

47

alpha 1.0 0.1 0.2 0.2 30.0 0.0 0.0 0.0 0.0 1.0

0 0 0 0 0 0 0 0 0 0

plotgrid foo.grid

plotcrit foo.crit

plotdef1 foo.def1 -1.0 1.0 21 -1.0 1.0 21

plotdef2 foo.def2 0.0 90.0 3 0.0 2.0 21

findimg 0.25 0.10

findimg 0.15 0.20

lightcrv foo.lcrv -0.2 -0.6 0.4 0.3 100

quit

You could then run

unixprompt% gravlens foo.in

to obtain the same results as the interactive run.

Finally, here is an example of how to use tabulated models (maketab and loadtab) and to check

the accuracy of the interpolated results (checkmod). Suppose you want to tabulate a devauc model

because it does not have an analytic solution. First you tabulate the lensing properties with an

input file such as:

set inttol = 1.0e-8

set gridflag = 0

startup 1 1

devauc 1.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 1.0

0 0 0 0 0 0 0 0 0 0

maketab devauc.tab 0.0 0.1 3 0.01 10.0 -101 101

quit

(This input file shows how to use a negative value for r steps to obtain a logarithmic grid.) Now

you do a run in which you load the tabulated results and then test the accuracy of the interpolation:

loadtab devauc.tab

set inttol = 1.0e-8

set gridflag = 0

startup 1 2

devauc 5.2 0.1 -0.3 0.05 40.0 0.0 0.0 4.0 0.0 0.0

devaucT 5.2 0.1 -0.3 0.05 40.0 0.0 0.0 4.0 0.0 0.0

0 0 0 0 0 0 0 0 0 0

checkmod devauc 0.0 10.0 1000

quit

(This input file shows how to use startup to enter two mass models with one galaxy each, startup

1 2, as opposed to a single mass model with two galaxies, startup 2 1.) When checkmod is finished

it shows you a simple text plot of the error histograms:

48

Error histograms: fraction versus log(err)

absolute relative

1.0 | 1.0 |

0.9 | 0.9 |

0.8 | 0.8 |

0.7 | 0.7 |

0.6 | * 0.6 |

0.5 | 0.5 | *

0.4 | 0.4 | *

0.3 | 0.3 |

0.2 | * * 0.2 |

0.1 | 0.1 | *

0.0 |--*--*-- -- -- --*--*--*-- 0.0 |--*--*-- -- -- --*--*--*--

<= -6 -5 -4 -3 -2 -1 => <= -6 -5 -4 -3 -2 -1 =>

Note that the first and last points in the plot refer to all errors outside the range of the histogram (i.e.,

≤ 10−7 or ≥ 1). You may want to use this technique to determine the resolution of the ellipticity,

radial, and angular grids you need to use in maketab in order to achieve the desired accuracy.

49

Chapter 5

Strategies for Modeling Strong Lenses

This chapter discusses general issues related to modeling strong lenses. Further discussion appears

in the companion paper ([Kee01b]). A lens usually consists of some number of point-like images

and/or extended images such as host galaxy arcs or an Einstein ring; the code allows you to use

some or all of these data to constrain lens models:

• Point images provide constraints from relative positions, fluxes, and time delays (§5.1). The

position constraints can sometimes be used to directly solve for some of the model parameters

(§5.2). (This material is discussed in detail in the companion paper; the sections here merely

review the main points.)

• Extended images provide numerous constraints that can help break common degeneracies in

lens models, but some care is needed to use the constraints efficiently (§§5.3 and 5.4).

Several common degeneracies plague lens modeling, especially when using only point images; §5.5

discusses the degeneracies and ways to identify and understand them. This chapter has a general

and theoretical bent; Chapter 6 describes how to use the lensmodel application to actually do the

modeling, and Chapter 7 leads you through some sample lensmodel runs.

5.1 Point images

In many lenses there are multiple images of a given source, and the basic data are the positions and

fluxes of the images. If there are measured time delays between the images, they can be used to

determine the Hubble constant H0 and to further constrain the lens models. See §4 of the companion

paper ([Kee01b]) for a detailed discussion of how to use point image data to constrain lens models,

including definitions of all of the χ2 goodness-of-fit terms. This section briefly reviews the methods

and discusses a few places where the code differs slightly from the discussion in the paper.

The χ2 for the image positions can be evaluated either in the image plane or on the source plane;

see §4.1 of the paper. The source plane χ2 can be convenient because it does not require the code to

50

solve the lens equation, but it is only approximately valid as a measure of the ability of the model

to fit the data. As a result, the source plane χ2 is useful for initial modeling to find the appropriate

region of parameter space to explore. However, for refining models to find the true best-fit model

and the range of models consistent with the data, it is preferable to use the image plane χ2. See

the paper for more discussion, and Chapter 7 for examples. In the code, you can select which χ2

definition to use with the variable chimode (see §6.6).

The use of image fluxes is discussion in §4.2 of the paper, but the code adds one additional

feature: signed fluxes to represent the parities of the images. In general, different images of a given

source have different partial parities. An image at a local minimum of the time delay surface has

two positive partial parities, an image at a saddle point has one positive and one negative, and an

image at local maximum has two negative partial parities. If we define the parity be the product of

the two partial parities, standard image configurations have the following properties (e.g., [SEF92]):

• In a double lens, one image has positive parity and the other negative.

• In a quadruple lens, as you move around in azimuth around the main lens galaxy the parity

always flips sign between images.

• (The faint central image has positive parity.)

These parities provide a very fast way to check whether a particular lens model is viable: if the

model parities do not match the observed parities, you can immediately exclude the model without

taking the time to solve the lens equation to compute the position and flux χ2 contributions.

You can specify the parity of an image by putting a sign on the flux f : use fobs,i > 0 for images

with positive parity, and fobs,i < 0 for images with negative parity. In its default mode, the code

expects signed fluxes, and it does the parity check as the first step in evaluating models. However,

when you first begin to model a lens you may not know what region of parameter space produces

models with the right parity. If you pick a random region, you are likely to have models with the

wrong parity; in this case the code will try a few models, decide that it cannot find any models with

the proper parities, and just stop. To avoid this problem, you can use the checkparity variable to

tell the code not to perform the parity check (see §6.2). In other words, turn the parity check off

when you first begin modeling a lens, but once you have a reasonable model turn the parity check

on to speed up the run.

Finally, if there are N time delays measured between the images, they can be used to determine

the Hubble constant H0 and to provide N − 1 additional constraints on the lens model. See §4.3

in the paper for a discussion of time delays. Note that the code assumes that the time delays have

independent Gaussian errors, which may not be true; the paper discusses some possible consequences

of this assumption.

51

5.2 Linear parameters and constraints

With reliable data it may be possible to solve for some of the parameters directly, without having to

include them in the numerical optimization. See §4.3 in the paper for a detailed discussion of how

to use “linear constraints” to solve for “linear parameters.”

5.3 Curve fitting

The number of constraints provided by extended images, essentially the number of independent

pixels, can far outnumber the constraints provided by discrete images. However, the constraints can

be hard to use because you do not know a priori which parts of the extended images are supposed

to map into each other. As a result, you must self-consistently build a model of the intrinsic source

distribution. There are several algorithms for doing this (e.g., [KBLN89]; [KN92]; [WKN96]), but

they are all computationally expensive.

There are two new fast techniques for modeling extended images: curve fitting applies to sep-

arated structures such as arcs, and is discussed in this section; ring fitting applies to partial or

complete Einstein rings, and is discussed in §5.4.

The idea of curve fitting derives from the fact that surface brightness is conserved in lensing (see

[SEF92]). Thus with extended arcs, contours of constant surface brightness in different arcs must

be images of each other. If you take a point on a given contour, all other images of its source must

lie on contours of the same surface brightness. Hence we can constrain the models by requiring that

curves map into each other. In practice our curves are not strict surface brightness contours, if for

no reason other than smearing by the PSF. However, the geometrical idea of matching curves is

still useful because it incorporates constraints from thin arcs and slightly resolved images, without

requiring the computational effort of building a full model of the intrinsic source. (A paper with a

more detailed discussion and sample applications is in the works.)

The basic idea of matching two curves A and B is as follows. Take curve A, map it to the

source plane to find the intrinsic source, and map that back to the image plane to find all the other

images of the curve. One of those images, call it A′, should be near curve B. A useful χ2 is the

perpendicular distance between A′ and B, integrated along the length of the curves.

There are practical complications because the curves can have different lengths and different

sampling intervals. To handle the different lengths, let the shorter curve be the “test” curve to be

compared to the longer “reference” curve. To handle the different samplings of the curve, compare

points on the test curve with segments of the reference curve. Consider a point y on the test curve

and find the nearest segment of the reference curve; the geometry is shown in Figure 5.1a. Let y′

be the projection of test point y onto the segment connecting reference points x1 and x2; simple

52

Figure 5.1 – Geometries for curve fitting. Panel (a) shows the simplest geometry for comparing a
point y on the test contour with a segment x1–x2 of the reference contour. Panels (b) and (c) show
complications that occur when y has n perpendicular projection onto the nearest contour segments
(panel b), or when y is near a point and two contour segments (panel c).

geometry gives

y′12(y) = [1− ξ12(y)] x1 + ξ12(y) x2 , (5.1)

where ξ12(y) =
(y − x1) · (x2 − x1)

|x2 − x1|2
. (5.2)

There is a proper projection, meaning that the projection lies on the segment between the two

references points, only if ξ is in the range 0 ≤ ξ ≤ 1. In this case, the perpendicular distance from

y to the line segment is then

d12(y) = |y − y′12(y)| . (5.3)

In addition to the simple case shown in Figure 5.1a, there are three possible complications. If

the reference curve bends and the test point is outside the bend, there may be no proper projec-

tion (Figure 5.1b); while if the test point is inside the bend, there can be two proper projections

(Figure 5.1c). Finally, if the test point lies beyond the end of the reference curve there will be no

proper projection (not shown). All of these cases can be handled by considering not only projections

onto segments, but also the distance from the test point to the nearest reference point. Thus the χ2

contribution for test point j is

χ2
test,j = min

i

(
|yj − xi|2

σ2
i

,
di−1,i(yj)2

σi−1σi

)
, (5.4)

where i runs over the reference points, and for each segment we take the errorbar to be the geometric

mean of the errorbars at the endpoints. If there are multiple reference curves, find the smallest

contribution among all the curves. The total χ2 for the curve constraints is just the sum over all

the test points,

χ2
crv =

∑
j

χ2
test,i . (5.5)

53

This definition reverts to the standard image plane χ2 for point sources if each “curve” consists of

only a single point.

Sometimes the curve fitting algorithm will try to reduce the total χ2
crv by changing the lens

model to eliminate some points. For example, suppose you have an extended source where part of

the source is doubly-imaged and part is quadruply-imaged. In some cases the code may be able to

get a lower total χ2
crv by making a qualitatively poorer fit that has fewer points. You can avoid this

problem by using as the curve statistic χ̄2
crv ≡ χ2

crv/Ncrv where Ncrv is the number of points. You

can specify this behavior using the variable chiperpoint (see §6.2).

There are a couple of limitations to this simple curve fitting technique. First, suppose the

uncertainty σ varies greatly along the curve. The funny situation may arise where it may be better

for the χ2 if the test point is matched to a distant segment that has a large uncertainty, as opposed

to a near segment with a small uncertainty. I don’t know how likely this problem is, and I haven’t

tried to remedy it. Second, the technique described here does not use any information about the

orientation of closed curves. Curve fitting will receive more attention when it is rigorously applied

to an observed lens; please let me know if you have good ideas or applications!

5.4 Ring fitting

The ring fitting technique for modeling Einstein rings is introduced and applied to three readl lenses

by [KKM01]. The basic idea is as follows. For an observed Einstein ring, create a series of spokes

emanating from a point inside the ring (such as the center of the lens galaxy). If the reference point

is (x0, y0), the spokes are

x(λ;ϕ) = x0 − λ sinϕ , (5.6)

y(λ;ϕ) = y0 + λ cosϕ , (5.7)

where ϕ is the azimuth angle of the spoke and λ is a parameter along the spoke. Along each spoke,

find the location λ0 of the peak surface brightness of the ring. The points (ϕ, λ0) form a curve in the

image plane that contains most of the information about the shape of the observed ring; henceforth

I refer to this set of points as the ring. [KKM01] show that this ring depends only on the position

and angular shape of the source, not on its radial profile. This result requires only the assumption

that the radial profile is monotonic, which is true for the host galaxies that we expect to form optical

and infrared Einstein rings. Hence the shape of the ring provides powerful constraints on the lens

model and on the shape of the source.

There are two other types of constraints you can get from a ring. If you trace the peak surface

brightness as a function of azimuth along the ring, local maxima are positions that map to the center

of the source, while local minima are positions where the ring crosses the critical curve of the lens

model.

54

The code allows all three types of constraints with a goodness of fit statistic

χ2
ring =

∑
ϕ

(λobs − λmod)2

σ2
λ

+
∑

maxima

|xobs − xmod|2

σ2
x

+
∑

minima

|xobs − xmod|2

σ2
x

. (5.8)

Here λobs and λmod are the observed and model ring positions on each spoke ϕ, respectively, and σλ
is the uncertainty in the observed value. Also, xobs and xmod are the observed and model positions

of the flux maxima and minima along the ring, with position uncertainty σx.

See [KKM01] for a much more detailed discussion of ring fitting, together with sample modeling

performed using the lensmodel code.

5.5 Common degeneracies

There are two types of degeneracies that often affect lens models. The first relates to the radial

density profile of the lens galaxy. If the lensed images lie at approximately the same distance from

the center of the galaxy, they constrain the total enclosed mass but not how that mass is distributed.

As a result, the lens might be consistent with a range of density profiles (e.g., [Koc91a]; [WP94];

[KK97]). A good strategy for handling the profile degeneracy is to study and understand a set of

models with a fixed profile, and then examine other profiles; see [KF99] and [CKMK01] for examples

of this approach.

The second degeneracy relates to the angular structure of the lensing potential. The lensed

images usually constrain the net quadrupole moment of the potential. However, the net quadrupole

moment can have contributions from the ellipticity of the lens galaxy as well as tidal shear from

the surrounding environment. Models with only one of these two compoents (ellipticity or shear,

but not both) are well constrained but usually do not give good fits (e.g., [KKF98]). Adding the

second component dramatically improves the fit, but there may end up being a significant degeneracy

between the shear and the ellipticity (e.g., [KKS97], especially Figure 8). If you need to use both

ellipticity and shear, it is important to understand whether there is a degeneracy between them, or

whether your data are good enough to break the degeneracy.

Another possible degeneracy arises when you explicitly model the sources of external tidal per-

turbations. If the source of the perturbations is relatively close to the lens, then approximating the

perturbations as an external shear may not be appropriate, and you may need to put down a mass

distribution representing the perturber. In this case, the location and physical properties of the per-

turber may be poorly constrained. [KK97] present examples for PG 1115+080, although [IFK+98]

show that improved data reduce the degeneracies; [Cha99] gives examples for Q 0957+561. The best

strategy here is to vary the properties of the perturber and understand how any degeneracies affect

conclusions drawn from the models.

55

Chapter 6

Modeling Strong Lenses: The lensmodel

Application

This chapter describes the lensmodel application, which takes the capabilities of the gravlens kernel

and supplements them with routines to make it easy to fit models to observed lens systems. Since

lensmodel operates in the same way as gravlens and uses many of its commands and variables,

you should read Chapter 4 before this chapter. The companion paper ([Kee01b]) and Chapter 5

give a detailed discussion of the modeling strategies that are implemented in lensmodel. Chapter

7 leads you step-by-step through some modeling examples.

6.1 Overview

A crucial step in any run is specifying the mass model with the startup command; see §4.2 to review

this command. One difference from gravlens is that lensmodel does use the flags that you specify

after giving the model parameters. These flags tell the optimization routine which parameters are

allowed to vary when searching for a best fit. For example, if you are fitting a singular isothermal

ellipsoid to an observed lens and you want to fix both the position and PA of the lens galaxy while

letting the mass and ellipticity of the galaxy vary, you might use:

> startup 1 1

alpha 1.1 -0.3 0.2 0.4 78.1 0.0 0.0 0.0 0.0 1.0

1 0 0 1 0 0 0 0 0 0

In the flags, the 1’s mean that the mass parameter (p[1]) and the ellipticity (p[4]) are allowed to

vary, while the lens position (p[2] and p[3]), PA (p[5]), and other parameters are not. The flags

apply in the same order as the parameters.

Because the code allows multiple galaxies in a model, the full set of parameters in a model can be

thought of as an array p[1..Ngal][1..10]. In this manual we refer to a particular model parameter

as an element in this array, e.g. p[igal][iparm]. This picture of a parameter array relates to the

startup command as follows:

56

> startup Ngal 1

model1 p[1][1] p[1][2] p[1][3] p[1][4] p[1][5] p[1][6] p[1][7] ...

model2 p[2][1] p[2][2] p[2][3] p[2][4] p[2][5] p[2][6] p[2][7] ...

...

modelN p[N][1] p[N][2] p[N][3] p[N][4] p[N][5] p[N][6] p[N][7] ...

[array of flags for what to vary]

The central function of the lensmodel application is to compute χ2 for a set of models. The

main constraints on models come from lens data, and these are explained in §6.2. If you have data

from different sources, you can have the code optimize the registration between the data sets (§6.3).

In some cases you can have the code solve analytically for some of the model parameters (§6.4). You

can also specify explicit constraints on parameters (§6.5). You can control the way the code searches

the parameter space for good models (§§6.6 and 6.7). Table 6.1 summarizes the basic capabilities of

lensmodel. Table 6.2 lists some χ2 values that indicate errors during runs, and Table 6.3 describes

the output files from various runs.

When optimizing models you need to be aware of any degeneracies among parameters; review

§5.5 for a brief discussion of some common degeneracies and how to handle them.

6.2 Specifying the lens data

6.2.1 Variables

rscale [1.0] Distance of farthest image from the lens galaxy — set automatically in the
code. (Also see §4.1.)

fluxweight [1.0] Weight applied to flux constraints in χ2.

checkparity [1] Flag for whether to check image parities.

nopointchi [0] Flag for whether to ignore point image.

chiperpoint [0.0] For curve constraints, compute total (0) or per point (>0) curve χ2. If
nonzero, it specifies the expected mean number of images and imposes a
penalty if the number of images is too small.

omitcore [0.0] Size of omitted regions around galaxies; see §4.5.

6.2.2 Commands

data 〈file〉
Loads lens data from the specified file. Assumes isotropic position uncertainties. The form

of the data file is discussed below.

data2 〈file〉

57

Feature Capability

Point images Position, flux, and time delay data.
Image plane or source plane χ2.
Can handle multiple sources.

Arcs Curve fitting.

Rings Ring fitting with elliptical sources.

General data Allows a floating registration between different
types of data (e.g., radio and optical).

Mass models Includes numerous circular and elliptical models,
and allows arbitrary combinations of them.

Parameters Gives full control over which parameters vary.
Can produce arbitrary parameter surveys.
Allows external constraints on parameter ranges.
Allows relations between parameters to be imposed.
Can use linear parameters and constraints.

Cosmology Allows arbitrary values of ΩM , ΩΛ, and H0.
Can determine H0 from time delays.

Output Goodness of fit.
Properties of mass model.
Critical curves and caustics.
Plots of time delay surface, potential, etc.

Table 6.1 – Features of lensmodel.

58

Similar to data, but allows error ellipses for the position uncertainties. The form of the

data file is discussed below.

crvmax [max # of curves] [max # of segments in a curve] [max # of points on a segment]

Checks or updates the maximum dimensions of curve data files.

crvstatus

Prints information about the curve data that have been loaded.

crvpts 〈index 〉 〈mode〉 [list of files]

Loads data for curve constraints. The index specifies which family of curves you are loading

(see below). The mode specifies which type of points you are loading: 1→loads reference

points, 2→loads test points. The form of the data files and the definition of χ2 are discussed

below.

ringmax 〈max # of rings〉 〈max # of rays on a ring〉
Sets maximum dimensions of ring data files.

ringdat [list of files]

Loads data for Einstein ring constraints.

6.2.3 Point images

When modeling lenses with discrete image, the code allows constraints from the positions and fluxes

of the images (see §5.1, and §4 of the companion paper [Kee01b]), as well as the position of the lens

galaxy and its optical properties like effective radius, PA, and ellipticity. In addition, if time delays

are known then lensmodel can use them to compute H0 and to constrain the models (see below).

If you do not wish to use a particular constraint, you must still include it in the data file but you

can give it a large errorbar. One exception: if time delays are not known, tell the code not to use

them by setting their errorbars to zero.

You can tell the code to ignore the point images entirely by setting nopointchi=1.

If the position errorbars are isotropic, use the data command to load a data file with the following

form:

Ngal # number of galaxies

[for each galaxy:]

x y sigma(x) # position and errorbar

R_e sigma(R_e) # effective radius and errorbar

PA sigma(PA) # PA and errorbar

e sigma(e) # ellipticity and errorbar

Nsrc # number of distinct sources

[for each source:]

Nimg # number of images of this source

59

[for each image of this source, including central image:]

x y flux sigma(x) sigma(flux) tdel sigma(tdel)

You can use blank lines or comment lines beginning with # to separate parts of the file. If you want

to use error ellipses for the position uncertainties, use the data2 command to load a data file with

the following form:

Ngal

[for each galaxy:]

x y sigma(a) sigma(b) sigma(pa)

R_e sigma(R_e)

PA sigma(PA)

e sigma(e)

Nsrc

[for each source:]

Nimg

[for each image of this source, including central image:]

x y flux sigma(a) sigma(b) sigma(pa) sigma(flux) tdel sigma(tdel)

Here each error ellipse is described by a semi-major axis σ(a), a semi-minor axis σ(b), and a position

angle σ(pa) measured in degrees East of North.

Three comments are in order. First, in its default mode the code finds the faint central image

that exists in all non-singular lens models but is rarely observed. There are two ways to handle such

core images (see Chapter 7 for an example). You can include estimated data for the core image.

For example, you might give it a position near the lens galaxy, with a large error bar to prevent the

position from contributing to the position χ2. If you have an upper limit on the flux of the central

image you can include that as the flux error bar; otherwise give it a large flux error bar. This is

the approach to take if you want to use the lack of a central image to constrain the core of the lens

galaxy. Alternatively, you can tell the code to ignore core images altogether using the omitcore

variable; see §4.5 for a discussion. Note that the code uses omitcore to decide whether each image

in the data file is a core image or not. Hence omitcore must be set before you load the lens data

using data or data2.

Second, the code uses signed fluxes for the images, where the sign indicates the parity (see §5.1).

In a 2-image lens, the outer image has positive parity and the inner image has negative parity.

In a 4-image lens there are two positive images and two negative images; the parity alternates as

you move around a circle centered on the lens galaxy. The code uses the parity as a first test to

determine whether a model is viable; if a model does not produce the correct parities, the code can

quickly reject the model without having to solve the lens equation, thus saving computation time.

This feature can be annoying, however, when you first start to model a lens. Your initial guess for

60

parameter values will likely produce a model that cannot reproduce the parities, and the code will

simply reject your model without telling you how to improve it. You can turn the parity check off by

setting checkparity=0. In general, you probably want to omit the parity check for initial modeling.

Once you get a reasonable first guess for a model, however, you probably want to turn the parity

check back on because it can speed up the run.

Finally, there is an important technicality of the startup, data, and data2 commands. When

the code reads the lens data, it sets the rscale variable equal to the maximum separation of an

image from the lens galaxy: rscale = maxi
∣∣xi − xgal

∣∣. The variables that set the radial extent

of the grid (gridlo1 and gridhi1) are then given in units of rscale. This wrinkle is included to

make sure that the image plane grid is always big enough to cover all of the images. For example,

if gridhi1=2 then the image plane grid will extend to twice the image separations, no matter how

large or small those separations are. That way you can run lensmodel on any lens system without

having to manually adjust the extent of the grid every time. Note, though, that this linking between

data/data2 (which set rscale) and startup (which uses it to generate the grid) means that you

should always call data/data2 before startup.

Examples

Here is a sample data file for a 4-image lens with isotropic position uncertainties, to be loaded with

the data command:

1 # number of galaxies

0.42 -1.31 0.05 # position: x y sigma

0.0 10000.0 # R_eff sigma

0.0 10000.0 # PA sigma

0.0 10000.0 # ellip sigma

1 # number of sources

5 # number of images for source #1

#

x y flux sig(x) sig(f) tdel sig(t)

#

-0.588 -1.934 401.0 0.01 20.0 0.0 0.0 # image A1

-0.721 -1.530 -362.0 0.01 18.1 0.0 0.0 # image A2

0.000 0.000 156.0 0.01 7.8 0.0 0.0 # image B

1.361 -1.635 -58.0 0.01 2.9 0.0 0.0 # image C

0.42 -1.31 0.1 10000. 10000. 0.0 0.0 # central image

(Note that comments are indicated by #; you can include comments as detailed as you like.) A more

complicated lens might have two sources, each of which is doubly-imaged. The position uncertainties

61

might be described by error ellipses (as opposed to isotropic errorbars). Here is a sample data file,

to be loaded with the data2 command:

1 # number of galaxies

-0.199 0.092 0.006 0.006 0. # position: x y sig(a) sig(b) sig(pa)

0.75 10000.0 # R_eff sigma

61.0 10000.0 # PA sigma

0.58 10000.0 # ellip sigma

2 # number of sources

3 # number of images of source #1

#

x y flux sig(a) sig(b) pa sig(f) tdel sig(t)

#

0.0000 0.0000 621 0.0014 0.0010 41. 7.0 0.0 0.6 # A1

-0.3091 0.1274 -172 0.0017 0.0010 -3. 3.0 11.7 0.6 # B1

-0.199 0.092 0.01 1000. 1000. 0. 1000. 0.0 0.0 # central

3 # number of images of source #2

-0.0010 0.0008 379 0.0011 0.0009 -7. 5.0 0.0 0.0 # A2

-0.3106 0.1274 -104 0.0018 0.0015 71. 3.0 0.0 0.0 # B2

-0.199 0.092 0.01 1000. 1000. 0. 1000. 0.0 0.0 # central

This data file also shows how to use the time delay constraints: simply make non-zero the time delay

error for any image whose time delay you want to use.

6.2.4 Time delays and H0

See §4.3 of the companion paper ([Kee01b]) for a discussion of how to use time delays to determine

the Hubble constant H0. The model time delay factors into two pieces (see eq. 23 in the paper),one

of which depends only on the model and the other of which (t0) depends only on cosmology. You

can specify the cosmology and the lens and source redshifts so the code can compute the time

delay scale t0 and thus express delays in h−1 days (assuming image positions in arcseconds); see

§4.6. Alternatively, you can compute the time delay scale t0 yourself and specify its value using the

tscale variable. Setting tscale supersedes zlens and zsrc.

Finally, you can specify a Hubble constant hval and its uncertainty hvale (see §4.6), which are

used as prior assumptions on h = H0/(100 km s−1Mpc−1) (see the paper, especially eqs. 27 and 28).

Using hvale=0 forces the code to use the specified value hval for h. Alternatively, using a large

value for hvale allows the code to adopt the value for h that gives the best fit to the time delays.

To trace χ2 versus h, use the varyh command (see §6.7).

62

Figure 6.1 – Curve data for the 4-image lens MG J0414+0534 (see [RGM+00]; data courtesy E. Ros
and J. Muñoz).

6.2.5 Curves

See §5.3 for a general discussion of how the code uses constraints from curves. The code allows you

to have multiple families of curves. Curve segments in a given family should map into each other,

but segments from different families should not. For example, Figure 6.1 shows curves used to model

the 4-image lens MG J0414+0534 (see [RGM+00]). The red curves all form one family, the green

curves form a second family, and the blue curves form a third family. In other words, all of the red

curves should map into each other, the green curves should map into each other, and so forth. No

63

red curve segment should map into any green or blue curve segment, and so forth.

Create a different file for each segment in each curve family. For example, for Figure 6.1 you

might have the following files:

red family : A1.1.dat, A2.1.dat, B.1.dat, C.1.dat
green family : A1.2.dat, A2.2.dat, B.2.dat, C.2.dat
blue family : A1.3.dat, A2.3.dat, B.3.dat, C.3.dat

The form of each curve data file is as follows:

N # number of points in this file

x1 y1 sigma1

x2 y2 sigma2

...

xN yN sigmaN

Note that the errorbars sigmaj must be included in the file, but they are used only for the reference

curves (and not for the test curves).

To load the curve data, use the crvpts command. You must specify the index of the curve

family you are loading. You must also specify a mode to indicate the type of points: mode 1 load

the reference curve(s), while mode 2 loads the test curve(s). For example, suppose you want to load

just the red family of curves, and you want to use image A1 as the test curve and all of the images

as the reference curves:

> crvpts 1 1 A1.1.dat A2.1.dat B.1.dat C.1.dat

> crvpts 1 2 A1.1.dat

To load all three families of curves:

> crvpts 1 1 A1.1.dat A2.1.dat B.1.dat C.1.dat

> crvpts 1 2 A1.1.dat

> crvpts 2 1 A1.2.dat A2.2.dat B.2.dat C.2.dat

> crvpts 2 2 A1.2.dat

> crvpts 3 1 A1.3.dat A2.3.dat B.3.dat C.3.dat

> crvpts 3 2 A1.3.dat

Use the crvstatus command to check the status of the curve data you have loaded.

Note that the crvpts command is set up so that you can use exactly the same data files for both

the reference curve(s) and the test curve(s). Thus if you have two curve segments A and B in the

files fooA.dat and fooB.dat, you could give the commands:

> crvpts 1 fooA.dat fooB.dat # load them as reference curves

> crvpts 2 fooA.dat fooB.dat # load them as test curves

64

In this case the χ2
crv statistic would quantify the ability of A to map into B and of B to map into

A.

The code has an upper limit on the number of curve families you can load, on the number of

curve segments per family, and on the number of points per segment. Use the crvmax command

with no arguments to check these limits. Use crvmax with its three arguments to change the limits.

Sometimes the curve fitting algorithm will try to reduce the total χ2
crv by changing the lens

model to eliminate some points. For example, suppose you have an extended source where part of

the source is doubly-imaged and part is quadruply-imaged. In some cases the code may be able to

get a lower total χ2
crv by making a qualitatively poorer fit that has fewer points. You can avoid

this problem by using as the curve statistic χ̄2
crv ≡ χ2

crv/Ncrv where Ncrv is the number of points.

Specify this behavior by setting chiperpoint > 0. The value of chiperpoint specifies the expected

mean number of images, and there is a penalty imposed if the number of images is too small.

Examples

Here is a sample curve data file, to be loaded with the crvpts command:

9 # number of points in this file

3.918765 3.585372 0.01

3.276968 5.600562 0.01

2.554720 6.119629 0.01

1.686298 6.843378 0.01

1.275909 6.705071 0.01

-0.662859 6.066982 0.01

-0.812853 4.424905 0.01

0.497114 3.585157 0.01

2.603029 2.688660 0.01

6.2.6 Rings

See §5.4 for a general discussion of how the code uses constraints from Einstein rings. To load the

ring data, use the ringdat command. You may use more than one Eintein ring. Put each ring into

its own file, and load them all with ringdat. For example, suppose you have an optical ring with

data in oring.dat and a radio ring with data in rring.dat. If you want to use just the radio ring,

use the command

> ringdat rring.dat

However, if you want to load both rings, use the command

> ringdat rring.dat oring.dat

The form of the ring data file is as follows:

65

N # number of rays on ring

[for each ray:]

x0 y0 phi lambda d(lambda) d(phi) flag

The ray is defined as

x(λ) = x0 − λ sinϕ , (6.1)

y(λ) = y0 + λ cosϕ , (6.2)

so ϕ is a position angle, i.e. given in degrees East of North. The value for λ in the data file gives

the location of the ring along that ray, with uncertainty dλ. The flag has the following values:

• flag=0: normal ring point.

• flag=1: local maximum in the flux along the ring.

• flag=2: local minimum in the flux along the ring.

§5.4 discusses how the various types of points are used. The angle uncertainty dϕ is used only for

points that are local maxima or minima in the flux along the ring.

In order to model a ring you must specify the parameters for the source. The only important

parameters are the position and shape — the ring fitting technique is insensitive to the radial profile

of the source (see §5.4 and [KKM01]). Specify the ring parameters as part of the lens model using

the ring model class:

ring <iring> <u0> <v0> <e> <PA> 0 0 0 0 0

Here iring specifies which ring you are talking about; the code can handle more than one ring. The

source position is given by (u0, v0), and the shape by (e,PA). The ring source parameters can be

optimized or held fixed just as any other model parameters.

Examples

(?? Add an example! ??)

6.3 Specifying data registrations

6.3.1 Variables

maxrgstr [5] Maximum number of registration definitions. (Also see §4.7.)

6.3.2 Commands

(None.)

66

6.3.3 Discussion

In some cases you might have different sets of data for which the relative registrations are poorly

known. For example, you may have observed point images at radio wavelengths, but the lens galaxy

and an Einstein ring at optical wavelengths (e.g., B 1608+656, [MFD+95]). In each observation

(radio and optical) the errorbars on the relative positions may be small, but the uncertainty in

registering the radio images relative to the optical galaxy may be considerably larger. For such

cases, you can tell the code to let the registration between the radio and optical maps “float” and

be optimized as part of the model.

In order to allow the registration to be optimized, it must be specified as part of the lens model.

Do this by using the model class register, which has the following form:

register <datatype> <xshift> <yshift> <index> 0 0 0 0 0 0

Note that the final six parameters (zeros in this example) are ignored. The datatype parameter spec-

ifies the type of data to which the registration applies: datatype=1 means point data, datatype=2

means curve data, and datatype=3 means ring data. The amount of shift applied to the data is

given by xshift and yshift; the shift is applied such that if a data file gives a data point at position

(xi, yi), the code treats the data point as though it were at (xi + xshift, yi + yshift).

Finally, index specifies which entry of a particular data type receives the shift. For example, if

you have point images for two sources

register 1 <xshift> <yshift> 1 0 0 0 0 0 0

specifies a shift that applies to the images for source #1, while

register 1 <xshift> <yshift> 2 0 0 0 0 0 0

specifies a shift that applies to the images for source #2. The same thing applies to ring data if you

have multiple rings. The value index=0 is special, and it indicates that the specified shift applies to

all data of the given type. In other words,

register 3 <xshift> <yshift> 0 0 0 0 0 0 0

indicates to apply the same shift to all Einstein rings.

When you specify the parameters of a model, the register specifications must come after all of

the mass components. For example,

> startup 4 1

alpha ...

nfw ...

register ...

register ...

67

is valid, but

> startup 3 1

alpha ...

register ...

nfw ...

register ...

is invalid because a mass component (nfw) comes after a register.

6.4 Using linear parameters and constraints

6.4.1 Variables

linparms [0] Flag for whether to fix linear parameters using linear constraints.

6.4.2 Commands

(None.)

6.4.3 Discussion

The basic ideas behind linear parameters and constraints are discussed in §4.4 of the companion paper

([Kee01b]). Candidate linear parameters are the galaxy mass parameters (p[j][1] for various j) and

the external shear parameters. The code currently allows the following modes of linear parameters;

recall that they all require the selected images to be fit exactly :

• linparms=0: No action.

• linparms=1: Uses the first two images of the first source to determine the amplitude and

direction of the external shear.

• linparms=2: Uses the first two images of the first source to determine the amplitude of the

external shear and the mass parameter of the main lens galaxy (p[1][1]).

• linparms=3: Uses the first two images of the first source to determine the mass parameters of

the first two galaxies (p[1][1] and p[2][1]). Requires a model with at least two galaxies.

6.5 Controlling the parameters

6.5.1 Variables

nobflip [0] Flag for whether to prevent sign flips in the b parameters. If nobflip=1,
the code rejects any model where a b parameter has changed signs relative
to the startup model.

68

6.5.2 Commands

plimits 〈file〉
Lets you limit the range of model parameters.

pmatch 〈file〉
Lets you specify relations between model parameters.

6.5.3 Discussion

The central step in lens modeling is varying the model parameters to find the best fit. With

plimits and pmatch you can control how the parameters vary. The two commands are similar, with

the difference that plimits involves absolute limits on parameter ranges, while pmatch involves

relations between parameters.

The code takes plimits constraints and adds a χ2 term to penalize the model when parameters

exceed a given range. You specify the contrained parameters and their ranges in a plimits input

file with the following form:

N (# of plimits constraints)

[for each constraint:]

igal iparm value sigma

For each plimits constraint the code adds a χ2 term of the form

χ2
plimits =

(p[igal][iparm]− value)2

σ2
. (6.3)

The code uses pmatch to enforce relations between model parameters. You specify the relations

in a pmatch input file with the following form:

N (# of pmatch constraints)

[for each constraint:]

igal iparm jgal jparm ratio sigma

For each pmatch constraint with σ = 0 the code forces

p[igal][iparm] = ratio× p[jgal][jparm] . (6.4)

For each pmatch constraint with σ 6= 0 the code adds a χ2 term of the form

χ2
pmatch =

(p[igal][iparm]− ratio× p[jgal][jparm])2

σ2
. (6.5)

It is important to understand the difference between these two types of constraints. The σ = 0

constraints represent parameter relations that are explicitly imposed on the models; p[igal][iparm]

69

is not allowed to vary separately from p[jgal][jparm], but is always forced to the obey the specified

relation. By contrast, the σ 6= 0 constraints are included only as χ2 penalties; the two parameters

are allowed to vary independently, but the model is penalized if they do not satisfy the specified

relation.

Direct control over the b parameters is provided with the variable nobflip. When you are using

complicated mass models with multiple components, the code may try to improve the fit by giving

one of the components a negative mass. To prevent this possibility, set nobflip=1 to tell the code

to reject (with a large χ2 penalty) any model where a b parameter has changed sign. The nobflip

actually works in reverse, too: if you are using a composite model where you actually want one of

the components to have a negative mass, 1 the code will prevent the corresponding b from becoming

positive. In other words, nobflip simply prevents b from changing signs. The signs are always

compared with the startup model.

6.5.4 Examples

We recently introduced models for Q 0957+561 comprising two concentric pseudo-Jaffe ellipsoids to

allow radial and angular substructure similar to that observed in the main lens galaxy (see [KFI+00]).

A typical example of such a model might be:

set galcoords = 2

startup 2 1

pjaffe 2.1 1.9 3.2 0.21 39.2 0.0 0.0 0.0 0.51 0.0

pjaffe 1.8 0.0 0.0 0.49 57.8 0.0 0.0 1.23 30.0 0.0

1 1 1 1 1 0 0 0 1 0

1 0 0 1 1 0 0 1 0 0

In this example the two pseudo-Jaffe components have different ellipticities and orientations, so in

the total model e and PA vary with radius to produce an “isophote twist.” We wanted to consider

models without a twist, so we used pmatch to force the two components to have the same ellipticity

and orientation using the following pmatch file:

2 # number of pmatch constraints

2 4 1 4 1.0 0.0 # fix e2 to match e1

2 5 1 5 1.0 0.0 # fix PA2 to match PA1

If we wanted to constrain the resulting model to have an orientation in the range 30◦ < PA < 70◦,

we could use plimits with an input file as follows:

1 # number of plimits constraints

1 5 50.0 20.0 # limit PA to be 50 +/- 20
1This situation might arise when you combine several mass models to mimic a more complicated profile. For

example, a pseudo-Jaffe model is a combination of two softened isothermal models where one component has a
negative mass (see Chapter 3.)

70

Alternatively, suppose we wanted to allow the isophote twist but to constrain the two orientations

to be in the range 30◦ < (PA1,PA2) < 70◦. Then we would not use pmatch, but we would use

plimits with the following input file:

2 # number of plimits constraints

1 5 50.0 20.0 # limit PA1 to be 50 +/- 20

2 5 50.0 20.0 # limit PA2 to be 50 +/- 20

6.6 Controlling the optimization

6.6.1 Variables

chimode [1.0] Which position χ2 to use: 0 → source plane, 1 → image plane, otherwise
mixed.

srcmode [1] Flag for whether to optimize source position.

optmode [1] Which optimization algorithm to use: 1 → amoeba, 2 → Powell.

vertmode [1] Controls how the vertices for the initial simplex are determined: 1→ along
parameter axes, 2 → random directions (see below).

xfloor [0.005],
xceil [0.1]

Smallest and largest length variations in initial simplex.

ftol [1.0e-4] Tolerance for optimization routine.

restart [1] Number of times to run optimization routine.

upenalty [1.0e-4] Penalty for being in wrong source region.

tempfiles [1] Flag specifying whether or not to write temporary files during optimiza-
tion; see Table 6.3.

6.6.2 Commands

(None.)

6.6.3 Discussion

You can choose to have the position χ2 evaluated in the image plane or the source plane, as discussed

in §5.1. Setting chimode=0 indicates the source plane χ2, while setting chimode=1 indicates the

image plane χ2. Any other value for chimode indicates a mixed use: the code evaluates the source

plane χ2, and if χ2 < chimode the code then computes the image plane χ2. You might be able to

use this to speed up runs: first evaluate the fast source plane χ2, and only if the model looks good do

you evaluate the slower but more robust image plane χ2. However, I have not explored this feature

very thoroughly.

71

Note that if you use just the source plane χ2, the code doesn’t need to solve the lens equation

and hence you don’t need to use the tiling algorithm. Thus, you can speed up the run by turning

off the tiling; to do so, set gridflag=0 (see §4.1).

Use srcmode to tell the code whether or not to optimize the source position when using the

image plane χ2. Optimizing the source gives the lowest χ2 but requires more function evaluations.

If you set srcmode=0, the code maps each image xi to its source ui and whichever of these sources

gives the lowest χ2.

Use optmode to select between the optimization algorithms amoeba and Powell, which are pre-

sented by [PTVF92].

To begin the optimization, the code must set up a “simplex” consisting of N + 1 vertices in the

N -dimensional space of parameters that vary. If you specify more than one model in the startup

command (see §4.2), the code uses up to N + 1 of those models as initial vertices.2 If you specify

fewer than N + 1 models, the code sets the remaining vertices automatically by taking steps away

from the initial model. For the automatic vertices, the code uses the χ2 to estimate an appropriate

length scale

δ ∼

[
χ2
pos∑

i 1/σ2
x,i

]1/2

, (6.6)

and it uses this scale to determine appropriate steps in each parameter.3 You can use the variables

xfloor and xceil to specify the smallest and largest length variations the code can use to set up

the initial simplex.

In default mode (vertmode = 1), the automatic vertices are determined by taking steps along

the parameter axes. Suppose the startup model is p0, the parameter space has 4 dimensions, and

the step sizes used to set up the initial simplex are δi. Then the additional vertices would be:

p1 = p0 + (δ1, 0, 0, 0) (6.7)

p2 = p0 + (0, δ2, 0, 0) (6.8)

p3 = p0 + (0, 0, δ3, 0) (6.9)

p4 = p0 + (0, 0, 0, δ4) (6.10)

However, if you set vertmode = 2 then rather than stepping along the unit vectors the code will

pick random directions:

p1 = p0 + (a11δ1, a12δ2, a13δ3, a14δ4) (6.11)

p2 = p0 + (a21δ1, a22δ2, a23δ3, a24δ4) (6.12)
2The exception is the reopt command, in which the code uses each of the startup models to start a separate

optimization. See §6.7 for details.
3Note that the randomize is different from the other optimization commands, and it does not use this technique

to set up the initial simplex; see §6.7.

72

p3 = p0 + (a31δ1, a32δ2, a33δ3, a34δ4) (6.13)

p4 = p0 + (a41δ1, a42δ2, a43δ3, a44δ4) (6.14)

where the aij are random numbers between −1 and 1. This random vertex mode may help the code

get out of local minima during restarts.

The optimization algorithm varies the parameters (the vertices in the simplex) to look for the

best fit. The algorithm stops when the fractional difference between the χ2 at all vertices is less

than ftol. If the model gives a perfect fit (χ2 ≈ 0), the algorithm stops when all vertices have

χ2 < ftol. There is a tradeoff to consider when setting ftol. Small values of ftol require many

function evaluations before they “converge” to the final fit. However, with large values of ftol the

optimization may stop before it reaches a true minimum in the χ2 surface — for example, it may

get hung up as it tries to work its way down a narrow valley. I have found that ftol = 10−4 seems

to work well.

A good way to check whether the optimization is getting hung up before it reaches a true

minimum is to restart the code from the “final” model and see if it reconverges to the same (or a

very similar) model. If you restart manually and discover that the code is stopping prematurely,

use the restart variable to tell the code to do the restart automatically. Note that restart is a

bit of a misnomer, because it is really the total number of runs, not the number of restarts.

Finally, when the code optimizes the source position, the source may cross a caustic and enter

the wrong region of the source plane. For example, when modeling a 4-image lens, the source may

accidentally step outside the astroid caustic and into the 2-image region (or vice versa). The code

uses the variable upenalty to define a penalty function that helps force the source back into the

correct region of the source plane. You should not need to adjust upenalty.

6.7 Optimizing the model

6.7.1 Variables

verbose [1] Specifies the extent to which status reports are written to the screen;
verbose = 1 means everything is written, while larger values means that
some messages are omitted (see below).

6.7.2 Commands

optimize [outbase]

Varies model parameters to find the best fit to the constraints. Writes the results to the

files outbase.dat and outbase.start. The default value of outbase is best.

minimize [outbase]

Same as optimize.

73

reopt 〈outbase〉 [starting index] [ending index]

Re-optimizes models given in the startup command. Writes the results to the files out-

base.dat and outbase.startN. Runs only between the specified starting and ending indices

(default 1 and N).

randomize 〈number of times to run〉 〈outbase〉

Generates a set of models with random values of the parameters that are allowed to vary, and

then runs the optimization. Can be run multiple times to check whether the “converged”

models are robust. After you give the randomize command, the code prompts you to specify

the ranges for the parameters that vary.

modelgrid 〈number of dimensions〉 〈outbase〉

Compute χ2 for a discrete grid of models. After you give the modelgrid command, the

code prompts you to specify the parameters and their ranges on the grid.

varyone 〈igal〉 〈iparm〉 〈lo〉 〈hi〉 〈steps〉 〈outbase〉

Computes 1-d slice of χ2 surface by tracing χ2 versus the specified parameter over the

specified range.

varytwo 〈igal〉 〈iparm〉 〈lo〉 〈hi〉 〈steps〉 〈jgal〉 〈jparm〉 〈lo〉 〈hi〉 〈steps〉 〈outbase〉

Computes 2-d slice of χ2 surface by tracing χ2 versus the specified parameters over the

specified ranges.

varyh 〈h lo〉 〈hi〉 〈steps〉 〈outbase〉

Computes χ2 versus H0 by tracing χ2 versus h over the specified range.

6.7.3 Discussion

Armed with the data and at least one startup model, the lensmodel application is set to compute

χ2 for a variety of models. There are several ways to do this. For fully automated optimization, use

optimize. With this command, the code varies all of the model parameters you flagged as variable

(in startup), using the Numerical Recipes [PTVF92] algorithm amoeba or powell to find the best-

fit model. This command can be dangerous, though, if there are degenaracies among the model

parameters (see §5.5). Be extremely wary of running a full optimization without first understanding

any parameter degeneracies that may be present!

For each command that involves looping over models (reopt, randomize, modelgrid, varyone,

varytwo, and varyh) you can use the verbose variable to specify the extend of status reports written

to the screen. In the most verbose setting (verbose = 1), the code prints a status report for each

step in the loop, plus some messages from the optimization routine as it operates. If you are doing

large loops where each step is fast, the time to print the status reports may slow you down and you

may wish to turn them off. For verbose = 2 you get medium verbosity; the optimization routine

74

becomes silent, but the code still tells you about each step in the loop. For verbose = 3 even the

loop steps are silent, so you get very few status reports.

To compute χ2 for a particular model (no optimization of parameters), simply run optimize

with all the parameters flagged to be fixed.

To trace out χ2 versus a particular model parameter (say p[igal][iparm]), use varyone. For

each value of the parameter, the code varies all the other parameters that you flagged as variable

(in startup). Note that you need not manually flag p[igal][iparm] as fixed; the code does that

automatically. Thus you can do back-to-back runs first holding p[igal][iparm] fixed and then

p[jgal][jparm], for example:

data mydata

startup 1 1

alpha 1.1369 0.5270 -1.3378 0.4382 79.05 0.0 0.0 0.0 0.0 1.0

1 0 0 1 1 0 0 0 0 0

varyone 1 4 0.0 0.6 21 vary_e

varyone 1 5 0.0 90.0 21 vary_PA

The first varyone run traces χ2(e) while the PA and mass vary, and the second run traces χ2(PA)

while e and the mass vary.

The command varyh is similar to varyone, but for the Hubble constant.

For two-dimensional cuts of parameter space, use the varytwo command. For higher-dimensional

cuts, use the modelgrid command. These commands compute χ2 on a parameter grid with any

dimension you choose (up to 10), again allowing other parameters to vary if desired. For example,

you could use varytwo to plot χ2 as a function of lens position where the lens mass, ellipticity, and

PA are optimized at every lens position:

startup 1 1

alpha 1.0 -0.492 0.193 0.1 10.0 0.0 0.0 0.0 0.0 1.0

1 0 0 1 1 0 0 0 0 0

varytwo 1 2 -0.6 -0.4 21 1 3 0.1 0.3 21 vary_pos

In this example, xgal varies from −0.6 to −0.4 in 21 steps, and ygal varies from 0.1 to 0.3 in 21 steps.

As another example, you could use modelgrid to plot χ2 as a function of the mass parameters for

a model with three spherical galaxies, where the galaxy positions are allowed to vary:

startup 3 1

alpha 0.416 -0.129 -0.945 0.0 0.0 0.0 0.0 0.0 0.0 1.0

alpha 0.253 -0.652 -0.742 0.0 0.0 0.0 0.0 0.0 0.0 1.0

alpha 0.285 -0.624 -1.491 0.0 0.0 0.0 0.0 0.0 0.0 1.0

0 1 1 0 0 0 0 0 0 0

0 1 1 0 0 0 0 0 0 0

75

0 1 1 0 0 0 0 0 0 0

modelgrid 3 vary_b3

1 1 0.1 0.8 8 # b for galaxy 1

2 1 0.1 0.5 5 # b for galaxy 2

3 1 0.1 0.5 5 # b for galaxy 3

The varyone command is useful for computing error bars on fitted parameters; for a parameter

p, trace χ2(p) and look for the region where χ2 changes by some fixed amount (e.g., ∆χ2 = 1).

The varytwo and modelgrid commands are useful for making cuts of parameter space to look for

degeneracies, and for examining the error ellipse for degenerate parameters.

There is an important detail about varyone and varytwo. During the run, when the code starts

to examine a new value for the parameter(s) in question, it uses a neighboring model as the starting

point. For example, if you are running varyone with the ellipticity from 0.1 to 0.3 in 21 steps, when

the code starts to examine e = 0.23 it will look at the model with e = 0.22 to get the starting

point. This feature is helpful when the model changes significantly during the course of the run.

However, it has one drawback. Sometimes the code gets confused and fails to find a good model

for a particular value of the parameter(s). The neighbor technique means that the bad model can

corrupt all subsequent models. The effect is obvious as a sharp discontinuity in the χ2 values. On

the occasions when I have encountered this problem, I have found that increasing the number of

models (so there is less distance between neighbors) often eliminates the problem. Another option

is to switch to modelgrid, which does not use the neighbor technique.

Another trick with the parameter survey commands is to set restart to be something greater

than 1 (see §6.6). This tells the code that for each parameter value it should run the optimization

routine once and then restart from the “converged” model and run again to make sure that the

routine didn’t get hung up in a local minimum or a narrow valley. Using restart=2 helps make the

optimization more robust, especially in more complicated lens models.

At times you may want to generate random models as starting points for the optimization. For

example, when you first begin modeling a system you may have no idea what parameter values are

appropriate. Or, when using complicated models you may want to run a series of tests to check

that your “converged” model is not just a local minimum of the χ2 function. Use randomize to

generate and run random models. The code asks you to specify ranges for the parameters that vary.

For example, suppose you want to run a model with a singular isothermal ellipsoid and an external

shear; suppose you want to fix the galaxy position and try random values of the mass, ellipticity

and its PA, and shear and its PA:

startup 1 1

alpha 1.0 -0.492 0.193 0.1 10.0 0.1 10.0 0.0 0.0 1.0

1 0 0 1 1 1 1 0 0 0

randomize 10 myrun

76

0.5 2.0 # b range

0.0 0.5 # ellip range

-90.0 90.0 # PA range

0.0 0.2 # shear range

-90.0 90.0 # PA range

(Note that you do not have to specify which parameters are active in randomize; the code uses the

vary flags given in the startup command to identify them. The parameter ranges are entered in the

same order as the vary flags.) The code creates an initial simplex whose vertices are random points

in the parameter box you specified, and uses this simplex to start the optimization routine. You

can repeat the process multiple times (10 in this example) to check whether the converged models

all agree. Note that if you do several randomize runs, you should change the seed for the random

number generator each time (see §4.7) so you don’t get the same sequence of “random” models for

each run.

You can re-optimize a set of models with the reopt command. For example, suppose you use

varyone to trace out χ2 versus some parameter p[igal][iparm]. Later, you update the lens data,

so you need to recompute χ2. You could run varyone again, but it would be faster to re-optimize

the old models. The previous varyone run produced a startup file, say old.startN, containing all

of the previous models. To reoptimize those models, use the commands:

data newdata

startup old.startN

reopt new

The reopt command has optional arguments specifying the range of model indices you want to run.

If you wanted to leave the first 10 models untouched and optimize models starting with number 11,

use the command:

reopt new 11

This option might be useful to run reopt in several pieces.

The code uses large errors of χ2 to indicate errors that occur during modeling. The large values

allow the code to handle the errors without crashing, and they should drive the model back into

acceptable regions. The error values are given in Table 6.2. The errors are often explained in the

working file chitmp.dat.

Each type of optimization command produces a specific set of output files; see Table 6.3 for a

description of the files. See Chapter 7 for a step-by-step discussion of sample runs.

77

χ2 Error

1e8 failed to initialize model because parameters out of bounds
1e9 failed parity test; see §§5.1 and 6.2
1e10 model has too many images
1e11 model has too few images

Table 6.2 – χ2 values that indicate specific errors. The total χ2 may be slightly higher than these
values (due to contributions from, say, galaxy or plimits constraints), but the order of magnitude
should still indicate the error.

78

Command File Comments

Working files† chitmp.dat models tested during optimization
crvpts.tmp points used with curve constraints
ringpts.tmp points used with ring constraints

optimize [outbase] outbase.dat a summary of the results for the best model
or minimize [outbase] outbase.start a startup file containing the best model

best.sm SuperMongo macros to plot the best model
grid.dat the grids for the best model
crit.dat the critical curves for the best model

reopt 〈outbase〉 outbase.dat the params for the re-optimized models
outbase.startN a startup file for the models

varyone 〈outbase〉 outbase.dat the params for the models
or varyh 〈outbase〉 outbase.chi the χ2 for the models‡

or varytwo 〈outbase〉 outbase.best a summary of the best model
or modelgrid 〈outbase〉 outbase.start a startup file for the best model
or randomize 〈outbase〉 outbase.startN a startup file for all models

Table 6.3 – Summary of output files for the various optimization commands.

† The working files can be large (especially chitmp.dat). Setting tempfiles=0 tells the code not to write them.
‡ The χ2 file is not written for modelgrid or randomize. The form of the χ2 file differs for different optimization
commands, and is described at the top of the file.

79

Chapter 7

A lensmodel Tutorial

This chapter leads you step by step through examples of modeling the lens PG 1115+080 (e.g.,

[KK97]; [IFK+98]). The chapter is organized in what I think of as a logical sequence for lens

modeling:

• §7.1, gather the data.

• §7.2, run 0th order models to get a general idea what the models should be like.

• §7.3, run models with ellipticity but no shear.

• §7.4, run ellipticity+shear models and understand degeneracies.

• §7.5, replace the shear with a model for the group of galaxies.

• §7.6, consider other, more complicated classes of models.

• §7.7, use the time delay to constrain the Hubble constant H0.

80

7.1 Data

Here is a sample data file, pg1115.dat, containing data for the lens PG 1115+080 from [IFK+98]:

1 # 1 lens galaxy

-0.382 -1.344 0.003 # position

0.59 1000. # R_eff observed: 0.59 +/- 0.06

0.0 1000. # PA unconstrained in observations

0.0 1000. # observed e < 0.07 at 1sigma

1 # 1 source

5 # 5 images of the source

-1.328 -2.037 3.88 0.003 0.78 0.0 0.0 # A1

-1.478 -1.576 -2.51 0.003 0.50 0.0 0.0 # A2

0.341 -1.960 -0.65 0.003 0.13 0.0 0.0 # B

0.0 0.0 1.0 0.003 0.20 0.0 0.0 # C

-0.383 -1.345 0.0 1000. 0.05 0.0 0.0 # central

note: use flux errorbars of 20%

The file includes contraints from the galaxy position, the quasar image positions,1 and the image

flux ratios. The position constraints are usually reliable within the quoted astrometric errorbars.

The flux ratios are often less reliable; they may vary systematically due to intrinsic variability in the

quasar combined with the lensing time delay; and they may vary randomly because of microlensing

by objects in the lens galaxy (e.g., [MS98]). These uncertainties are probably more significant for

optical fluxes than for radio fluxes. For these reasons, I have set the flux uncertainties to 20%.

The file includes data for the effective radius, PA, and ellipticity of the main lens galaxy. The

effective radius and ellipticity are useful if using a de Vaucouleurs constant mass-to-light ratio galaxy,

but they are less useful for more general dark matter models because there is no a priori reason

to think that the dark halo must resemble the luminosity distribution. There is evidence that the

projected mass and light distributions tend to be aligned ([KKF98]); so the lens galaxy PA might

provide a helpful constraint, but it is not yet clear how reliable it is. I have set large errorbars so

the code does not use any of these constraints.

The file includes a guess for the faint central image, which has not been observed. I have assumed

that the central image will be near the center of the lens galaxy, but sets a large position uncertainty;

and I have constrained it to have a flux <5% of the C image at 1σ. However, in the modeling I

usually tell the code to ignore the central image (using omitcore).

This data file does not include the time delay; see §7.7 for an example of time delays and the

Hubble constant.
1With isotropic position uncertainties. See §6.2 for a discussion of how to use error ellipses.

81

7.2 Preliminary models

The first step is to determine the basic parameters for models. For these preliminary models, I often

use the source plane χ2 so I can move through this process quickly. When you use the source plane

χ2, you don’t need the tiling (because the code doesn’t need to solve the lens equation), so you can

set gridflag=0 to turn of the tiling and speed up the runs.

I often begin by taking a singular isothermal ellipsoid (SIE), fixing the lens at the observed

position, and varying the b parameter (the lens mass) together with the ellipticity and orientation.

Fixing the lens simply reduces the number of free parameters on a first pass. If you do not know

the orientation of the lens, you may want to use varyone to explicitly examine a set of orientations,

as in this example:

explore PAs, optimizing b and ellipticity;

fix lens at observed position

set omitcore = 0.05 # don’t care about core image; must go *before* data

data pg1115.dat

set chimode = 0 # preliminary: use source plane chi^2

set checkparity = 0 # don’t worry about parities

set gridflag = 0 # don’t need the tiling

startup 1 1

alpha 1.0 -0.382 -1.344 0.03 10.0 0.0 0.0 0.0 0.0 1.0

1 0 0 1 1 0 0 0 0 0

varyone 1 5 -90.0 90.0 19 prelim1

quit

The code writes a file called prelim1.chi which contains the χ2 as a function of PA, with the best

model summarized in the file prelim1.best. (The varyone command specifies that the base name

for the output files is prelim1.) The “best-fit” is very bad, with χ2 = 2616.5, but it’s a place to

start.

Next, use the model from prelim1 to start a new run where you optimize the PA, again using

the source plane χ2 for speed:

now optimize PA

set omitcore = 0.05

data pg1115.dat

set chimode = 0

set checkparity = 0

set gridflag = 0

startup 1 1

alpha 1.121597 -0.382 -1.344 0.3539533 70.0 0.0 0.0 0.0 0.0 1.0

1 0 0 1 1 0 0 0 0 0

optimize

quit

82

Allowing the PA to vary yields χ2 = 799.8. Now the best-fit model is summarized in the file

best.dat, because that is the file used by the optimize command (see Table 6.3). The parameters

are:

alpha 1.134208e+00 -3.820000e-01 -1.344000e+00 3.498284e-01 6.637265e+01 \\

0.0 0.0 0.0 0.0 1.0

7.3 Elliptical models

Now it’s time to get serious about elliptical models, letting the lens position vary and using the

image plane χ2 to see how well the models really do:

start with the best preliminary model and optimize

all parameters, using the image plane chi^2

set omitcore = 0.05

data pg1115.dat

startup 1 1

alpha 1.134208 -0.382 -1.344 0.3498284 66.37265 0.0 0.0 0.0 0.0 1.0

1 1 1 1 1 0 0 0 0 0

optimize

quit

Now the best-fit model is

alpha 1.124237e+00 -3.779179e-01 -1.362499e+00 3.801617e-01 6.651718e+01 \\

0.0 0.0 0.0 0.0 1.0

and it has χ2 = 784.7. Note we are now using the image plane χ2, which is computed with directly

observable quantities and is thus better than the source plane χ2 for indicating how well the model

agrees with the data (see §5.1).

Look at the file best.dat to get a detailed summary of the model, including the χ2 broken

down into various components, the source parameters, and a summary of how the observed images

compare to model images. For example, the line

Source #1: (u,v) = (-0.38943, -1.18302), fsrc = 0.2998, h = 1.0000

gives the position and flux of the source. (The h parameter indicates the value of the Hubble constant

H0 when time delays are included; see §7.7.)

If you want to view the model graphically, you can use a set of SuperMongo macros in the file

best.sm, which is automatically generated by the code. Figure 7.1 illustrates the best-fit SIE model

for PG 1115+080.

83

Figure 7.1 – The best-fit SIE model for PG 1115+080. The left-hand panel shows the image plane,
with the tiling in black, the critical curve in red, and the images in blue. The right-hand panel
source the source plane, with the tiling again in black, the caustics in red, and the source in blue.
This figure was produced using the SuperMongo macros in the file best.sm that is generated by the
code. (Run SuperMongo, run the macros, and execute the macro plot.)

7.4 Models with external shear

The SIE model gives a very bad fit, χ2 = 784.7, so clearly it is oversimplified. To make the

model more complicated, the best place to start is the angular structure of the lens model because

many lenses seem to require an external tidal perturbation in addition to an ellipsoidal galaxy (e.g.,

[KKS97]), and because in PG 1115+080 we know there is a group of galaxies around the lens that

perturb the lens model (e.g., [KCBL97]; [Ton98]).

When you add a shear you should proceed carefully, because there may be a strong degeneracy

between ellipticity and shear that you need to understand (e.g., [KKS97]). Here’s one way to proceed.

At first you don’t know the amplitude or orientation of the shear, nor do you know the ellipticity

and orientation of the galaxy in the presence of a shear. The first thing I would do is pick arbitrary

value for the ellipticity and shear and try to find the optimum orientations:

first fix ellip/shear and use varytwo to examine

a range of PAs; use source plane chi^2

set omitcore = 0.05

data pg1115.dat

set chimode = 0

set checkparity = 0

set gridflag = 0

84

set restart = 2

startup 1 1

alpha 1.124095e+00 -3.777015e-01 -1.362442e+00 0.1 0.0 0.1 0.0 0.0 0.0 1.0

1 1 1 0 0 0 0 0 0 0

varytwo 1 5 -90.0 90.0 19 1 7 -90.0 90.0 19 run1

quit

Note that for now I am using the source plane χ2 for speed. Also note that I am using the restart

variable to help ensure that the code finds the minimum of the χ2 function and doesn’t get hung up

in a local minimum or a narrow valley (see §6.6).

Next I would take the result of the previous run and use it to start a run where I optimize the

orientations, but still keeping the ellipticity and shear fixed:

optimize the PAs, with ellip/shear fixed;

use source plane chi^2

set omitcore = 0.05

data pg1115.dat

set chimode = 0

set checkparity = 0

set gridflag = 0

set restart = 2

startup 1 1

alpha 1.146101e+00 -3.650053e-01 -1.353517e+00 0.1 80.0 0.10 60.0 0.0 0.0 1.0

1 1 1 0 1 0 1 0 0 0

varytwo 1 4 0.0 0.5 11 1 6 0.0 0.2 11 run2

quit

Now that I have optimized all the other parameters with the ellipticity and shear fixed, I would

let the ellipticity/shear vary and optimize everything. Here I would use the image plane χ2:

optimize all; use image plane chi^2

set omitcore = 0.05

data pg1115.dat

startup 1 1

alpha 1.135596e+00 -3.682313e-01 -1.342225e+00 0.2 -8.867558e+01 \\

0.1 4.820297e+01 0.0 0.0 1.0

1 1 1 1 1 1 1 0 0 0

optimize

quit

The best-fit model is

alpha 1.137422e+00 -3.683225e-01 -1.341511e+00 1.859513e-01 -8.830340e+01 \\

9.997982e-02 4.945917e+01 0.0 0.0 1.0

85

which has a small-ish ellipticity e = 0.19 and a moderate shear γ = 0.10. The shear has improved

the fit substantially: now we get χ2 = 34.3.

I mentioned above that you want to be wary of a degeneracy between the ellipticity and shear.

So I would go back and use varytwo to examine the ellipticity/shear plane and look for such a

degeneracy:

now look for ellip/shear degeneracy;

use image plane chi^2

set omitcore = 0.05

data pg1115.dat

set restart = 2

startup 1 1

alpha 1.137422e+00 -3.683225e-01 -1.341511e+00 1.859513e-01 -8.830340e+01 \\

9.997982e-02 4.945917e+01 0.0 0.0 1.0

1 1 1 1 1 1 1 0 0 0

varytwo 1 4 0.0 0.5 26 1 6 0.0 0.2 21 run4

quit

Figure 7.2 shows contours of χ2 from this run, which show a degeneracy such that models can have a

larger ellipticity with a smaller shear, or vice versa. The minimum of the χ2 function is well-defined,

but it is still important to keep the degeneracy in mind when interpreting models.

7.5 Models with the group

The perturbation from the group may not well modeled as an external shear. To make the model

more complicated and realistic, the next logical step is to add a mass distribution representing

the group. The first thing you might try is a singular isothermal sphere (SIS) representing the

common group halo, because it is a simple but not unrealistic mass distribution that adds only three

parameters to the total model. (You can try more complicated models later if you want.) You need

two parameters for the position of the group, which I usually specify in polar coordinates relative

to the lens galaxy, plus one parameter for the mass scale of the group (the b parameter of the SIS).

The first step is to find some reasonable model that includes the group, which you will later

optimize. You can get some idea of a relevant model using the models with external shear: the shear

angle gives an idea of the direction to the group, and the shear amplitude gives an idea of the group

mass. The shear angle was 50◦, but because an external shear is degenerate to changing the angle

by ±180◦ the direction to the group could be around 50◦ or around −130◦. The observed group is

southwest of the lens galaxy ([KCBL97]; [Ton98]), so guess −130◦.

Now you want to get a rough idea of the group position. Here’s a run where I use varytwo to

examine a set of positions, optimizing the lens galaxy and the group mass (b), and using the source

86

Figure 7.2 – χ2 contours for PG 1115+080 in the plane of ellipticity e and shear γ. The contours
are drawn at ∆χ2 = 2.30, 4.61, 6.17, 9.21, and 11.8, which correspond to the 1σ, 90%, 2σ, 99%,
and 3σ confidence intervals for two parameters (see [PTVF92]). The contours at low ∆χ2 are not
well resolved because the plane is sparsely sampled (a 26 × 21 grid); if I were running “for real” I
would sample the plane more densely to remove this effect. Nevertheless, there is a clear degeneracy
between the ellipticity and shear.

plane χ2 since this is just a first cut. In the specification of the model parameters, the first alpha

model refers to the lens galaxy, while the second refers to the group:

use varytwo to try a range of group positions,

using source plane chi^2 for speed

set omitcore = 0.05

data pg1115.dat

set chimode = 0

set checkparity = 0

set restart = 2

set gridflag = 0

set galcoords = 2 # give group position in polar coordinates

startup 2 1

alpha 1.138809e+00 -3.683466e-01 -1.340800e+00 1.750000e-01 -8.795244e+01 \\

0.0 0.0 0.0 0.0 1.0

alpha 4.0 20.0 -120.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0

1 1 1 1 1 0 0 0 0 0

87

1 0 0 0 0 0 0 0 0 0

varytwo 2 2 10.0 20.0 11 2 3 -140.0 -100.0 11 run1

quit

Next I would take the best model from this run and use it to start a run where I optimize everything

including the group position; now I use the χ2 to run “for real”:

optimize using image plane chi^2

set omitcore = 0.05

data pg1115.dat

set galcoords = 2

startup 2 1

alpha 1.028937e+00 -3.842081e-01 -1.345091e+00 4.412798e-02 2.412278e+01 \\

0.0 0.0 0.0 0.0 1.0

alpha 2.114593e+00 1.000000e+01 -1.120000e+02 0.0 0.0 0.0 0.0 0.0 0.0 1.0

1 1 1 1 1 0 0 0 0 0

1 1 1 0 0 0 0 0 0 0

optimize

quit

The best-fit model has χ2 = 3.59, so it is quite a good fit to the data. The parameters are:

alpha 1.033458e+00 -3.816041e-01 -1.343972e+00 3.030961e-02 4.081453e+01 \\

0.0 0.0 0.0 0.0 1.0

alpha 2.115115e+00 1.032799e+01 -1.137792e+02 0.0 0.0 0.0 0.0 0.0 0.0 1.0

Given the galaxy/environment degeneracy seen in the shear models, it’s worth looking for de-

generacies in groups models. Here is a run using varytwo and the image plane χ2 to determine the

range of group positions that give good fits:

set omitcore = 0.05

data pg1115.dat

set galcoords = 2

set restart = 2

startup 2 1

alpha 1.033458e+00 -3.816041e-01 -1.343972e+00 3.030961e-02 4.081453e+01 \\

0.0 0.0 0.0 0.0 1.0

alpha 2.115115e+00 1.032799e+01 -1.137792e+02 0.0 0.0 0.0 0.0 0.0 0.0 1.0

1 1 1 1 1 0 0 0 0 0

1 1 1 0 0 0 0 0 0 0

varytwo 2 2 5.0 20.0 31 2 3 -130.0 -100.0 31 vary_group

quit

Figure 7.3 shows χ2 contours versus the group position from this run. There is a range of group

positions that yield good fits, although the range is surprisingly small given that the galaxy dominates

88

Figure 7.3 – χ2 contours for PG 1115+080 in the plane of the group position (in polar coordinates).
The contours are drawn at ∆χ2 = 2.30, 4.61, 6.17, 9.21, and 11.8, which correspond to the 1σ, 90%,
2σ, 99%, and 3σ confidence intervals for two parameters (see [PTVF92]). There are a few funny
points, like (13.0,−118.0), where the blip in the χ2 surface suggests that the code did not converge
to the global minimum. If I were running “for real” I would work to clean up such points, perhaps
running those models separately and then modifying the χ2 data file with the updated results.

the lensing potential and the group merely perturbs it. The range of acceptable models must be

considered as part of the systematic uncertainties in the lens model.

7.6 Other models

You may want to consider other more complicated model to identify other systematic model uncer-

tainties. For example, you should consider other radial profiles for the main lens galaxy (see [KK97];

[IFK+98]; [KKM01]). You should also consider other models for the group. [KK97] examine models

where the group halo is more concentrated than an isothermal sphere. It would also be interesting to

examine more complicated models for the group — including the known member galaxies instead of

just a common dark matter halo, and allowing the extended halo to depart from spherical symmetry.

All of these models could be run in lensmodel using the techniques already discussed.

89

7.7 Using time delays to determine the Hubble constant

Time delays in PG 1115+080 were first measured by [SBB+97], and the standard values are taken

from the re-analysis of the data by [Bar97]. Image C is the leading image, followed by the A1/A2 pair

and then image B. The time delay between images C and B is the best measured, ∆tCB = 25.0±1.6

days, and this is the value I use.

You can include time delays in the lens data file if you want to use them to determine the Hubble

constant H0 and further constrain the models. Use the sixth and seventh columns in the data file

to specify the delays and their uncertainties. The code ignores any time delay whose errorbar is set

to zero. Here is a data file for PG 1115+080 with the B−C time delay; it is identical to the data file

in §7.1 above except for the time delay:

1 # 1 lens galaxy

-0.382 -1.344 0.003 # position

0.59 1000. # R_eff observed: 0.59 +/- 0.06

0.0 1000. # PA unconstrained in observations

0.0 1000. # observed e < 0.07 at 1sigma

1 # 1 source

5 # 5 images of the source

-1.328 -2.037 3.88 0.003 0.78 0.0 0.0 # A1

-1.478 -1.576 -2.51 0.003 0.50 0.0 0.0 # A2

0.341 -1.960 -0.65 0.003 0.13 25.0 1.6 # B

0.0 0.0 1.0 0.003 0.20 0.0 1.6 # C

-0.383 -1.345 0.0 1000. 0.05 0.0 0.0 # central

note: use flux errorbars of 20%

First I want to determine the value of H0 implied by the best-fit group model from §7.5. For

simplicity, I put the model parameters in a startup file called group.start (see §4.2). I then do

the following run:

set omitcore = 0.05

data pg1115_tdel.dat

set galcoords = 2

#

set omega = 0.3

set lambda = 0.7

set zlens = 0.31

set zsrc = 1.72

set hvale = 1.0e6

#

90

startup group.start

optimize

quit

Note that this input file specifies the cosmology as well as the lens and source redshifts; the code uses

these values to compute the time delay scale factor t0 (see eq. 23 of the companion paper [Kee01b]).

The input file also includes set hvale=1.0e6, which tells the code that to use the time delay to

determine H0 with no prior assumption on the value (see §4.3 of the companion paper). When the

run is complete, look at the file best.dat to get the results. There is a line

tscale = 3.255131e+01

which gives you the value of the scale factor t0, in h−1 days, for the cosmology and redshifts you

specified. The value for H0 is given by the value of h = H0/(100 km s−1Mpc−1) in the line

Source #1: (u,v) = (1.51556, -2.09162), fsrc = 0.1702, h = 0.4528

In other words, this model gives H0 = 45 km s−1Mpc−1, which is very low compared with standard

values, but it is what you get with isothermal+group models for PG 1115+080 ([IFK+98]).

The value for H0 does not include any errorbars. There is a contribution due to uncertainties in

the measured time delay, plus a contribution due to uncertainties in the lens model. The uncertainties

in this particular model class (SIE galaxy plus SIS group) can be determined from the run at the

end of §7.5, because that run indicates how much you can vary the model parameters and still

get an acceptable fit. See [KK97] and [IFK+98] for a detailed discussion of how to determine the

uncertainties in H0 that are associated with uncertainties in the lens model. Finally, §7.6 discusses

other classes of models that should be considered, and you should examine how they affect the

inferred value of H0. See [KK97], [IFK+98], and [KKM01] for a discussion of how changing the

radial profiles of the galaxy and group affect H0.

91

Chapter 8

Warnings and Error Messages

Here is an incomplete list of warnings and error messages that you might encounter while running

the code.

• “Non-converged image”: The code is having trouble with images very close to critical curves;

see §4.5.

• “Too many steps in numerical integration”: The code is having trouble with a numerical

integral. I hope you don’t encounter this one! If you do, contact me with a detailed description

of the type of model you were trying to run and the context — including input and data files

would be good.

• “With a point mass at the origin, gridlo1 must be >0”: The deflection diverges at the location

of a point mass, so you must make sure that the code does not try to evaluate the model at

that point. The problem is most likely if you have a point mass at the origin; if you have

gridlo1=0, the code must evaluate the origin to construct the grid. In this situation, simply

set gridlo1 to something small but non-zero (e.g., gridlo1=1.0e-4). (If you have a point

mass that is not at the origin, chances are low that the code will need to evaluate the model

at the exact position of the point mass.)

• “Grid has more than 180 degrees per angular step”: The tiling algorithm does not work properly

if the grid has more than 180◦ per angular step, because then some of the tiles may not be

convex. Increase the angular resolution. (You would encounter this error only when trying to

run with a very low resolution grid, e.g. ngrid2=2. You might think of doing this when doing

modeling with the source plane χ2, because then you don’t need to waste time computing

the tiling. When you don’t need the tiling, it is better to turn it off altogether by setting

gridflag=0; see §4.1.)

92

Chapter 9

Known Limitations

In general, I believe that the code works correctly. It has been used for several years by different

people for different applications, and we have not uncovered any fundamental errors. Nevertheless,

I make no guarantee of its accuracy. I encourage you to perform your own tests, and to watch

out for results that do not make sense. Please feel free to contact me about any questions you

have; my contact information is kept current on the code’s website, available via the website for the

CfA/Arizona Space Telescope Lens Survey at http://cfa-www.harvard.edu/castles.

Here is a list of some limitations that I know exist in the current version of the code.

• Single lens plane: The code cannot handle multiple lens planes. Allowing additional lens planes

should not be difficult; I just haven’t gotten around to it yet.

• Maps of extended images: The only existing features for modeling extended images are “ring

fitting” for (optical) Einstein rings and “curve fitting” for arcs (see Chapter 5). In both cases

you must process a map of extended images to extract data in the form that the code can use.

The code cannot take a full map of exteneded images and do pixel-by-pixel modeling.

• Resolving the cores of galaxies: The tiling of the image plane uses a polar grid centered on

the first lens galaxy (see §4.1), so the grid resolution on this galaxy is intrinsically very good.

The same does not hold, however, for mass distributions centered at other positions. I have

not come up with a tiling scheme that can automatically give comparable resolution to two

galaxies simultaneously. The code does use recursive sub-tiling to increase the resolution near

additional galaxies (see the companion paper, [Kee01b]), and while the resolution is improved

it is still not as good as on the first galaxy. You should check to make sure the resolution is

good enough for your purposes; for example, if a second galaxy is near enough that it might

produce additional images, you should make sure that its critical curves are well resolved. You

can control the resolution by changing the resolution of the top grid, or by controlling the

recursive (using the maxlev and gallev variables; see §4.1).

93

Chapter 10

Index

All variables and commands,

in alphabetical order:

autogrid – command – 29

calcRein – command – 44

catalog – variable – 38

checkder – command – 42

checkgaps – variable – 29

checkmag – command – 42

checkmod – command – 42

checkparity – variable – 57

chimode – variable – 71

chiperpoint – variable – 57

crittol – variable – 29

crvmax – command – 59

crvpts – command – 59

crvstatus – command – 59

data – command – 57

data2 – command – 57

ellimg – command – 44

ellsrc – command – 44

findimg – command – 44

findimg2 – command – 44

findimg3 – command – 44

findsrc – command – 44

fluxweight – variable – 57

ftol – variable – 71

galcoords – variable – 32

gallev – variable – 29

gridflag – variable – 29

gridhi1 – variable – 29

gridhi2 – variable – 29

gridlo1 – variable – 29

gridlo2 – variable – 29

gridmode – command – 29

help – command – 9

hval – variable – 41

hvale – variable – 41

imglev – variable – 29

intshrmode – variable – 32

inttol – variable – 41

lambda – variable – 41

lightcrv – command – 45

linparms – variable – 68

listmodels – command – 33

loadtab – command – 35

magtensor – command – 45

maketab – command – 35

maxlev – variable – 29

maxrgstr – variable – 41

maxshear – variable – 32

minimize – command – 73

mock1 – command – 45

mock2 – command – 45

94

modelgrid – command – 74

NGALMAX – variable – 32

ngrid1 – variable – 29

ngrid2 – variable – 29

nobflip – variable – 32

nopointchi – variable – 57

nsubg1 – variable – 29

nsubg2 – variable – 29

omega – variable – 41

omitcore – variable – 39

omitcrit – variable – 39

optimize – command – 73

optmode – variable – 71

plimits – command – 69

plotcrit – command – 43

plotdef0 – command – 43

plotdef1 – command – 43

plotdef2 – command – 43

plotgrid – command – 43

plotkappa – command – 43

plotmag – command – 44

plottdel – command – 44

pmatch – command – 69

potflag – variable – 32

quit – command – 10

randomize – command – 74

reopt – command – 73

restart – variable – 71

ringdat – command – 59

ringmax – command – 59

rscale – variable – 29

SBmap1 – command – 45

SBmap2 – command – 45

seed – variable – 41

set – command – 10

shrcoords – variable – 32

srcmode – variable – 71

startup – command – 32

tempfiles – variable – 71

tscale – variable – 41

upenalty – variable – 71

varyh – command – 74

varyone – command – 74

varytwo – command – 74

verbose – variable – 73

version – command – 41

vertmode – variable – 71

xceil – variable – 71

xfloor – variable – 71

xtol – variable – 38

zlens – variable – 41

zsrc – variable – 41

95

Bibliography

[Bar96] M. Bartelmann. “Arcs from a universal dark–matter halo profile”. A&A, 313:697, 1996.

[Bar97] R. Barkana. “Analysis of time delays in the gravitational lens PG 1115+080”. ApJ,

489:21, 1997.

[BF99] G. Bernstein and P. Fischer. “Values of H0 from the gravitational lens 0957+561”. AJ,

118:14, 1999.

[BFFP86] G. Blumenthal, S. Faber, R. Flores, and J. Primack. “Contraction of dark matter

galactic halos due to baryonic infall”. ApJ, 301:27, 1986.

[BGF+96] Y.-I. Byun, C. J. Grillmair, S. M. Faber, E. A. Ajhar, A. Dressler, J. Kormendy, T. R.

Lauer, D. Richstone, and S. Tremaine. “The centers of early-type galaxies with HST.

II. Empirical models and structural parameters”. AJ, 111:1889, 1996.

[CCRP01] V. F. Cardone, S. Capozziello, V. Re, and E. Peidipalumbo. “Gravitational lensing

potential reconstruction in quadruply imaged systems”. A&A, 379:72, 2001.

[Cha99] K.-H. Chae. “New modeling of the lensing galaxy and cluster of Q0957+561: Implica-

tions for the global value of the Hubble constant”. ApJ, 524:582, 1999.

[CKMK01] J. D. Cohn, C. S. Kochanek, B. A. McLeod, and C. R. Keeton. “Constraints on

galaxy density profiles from strong gravitational lensing: The case of B1933+503”. ApJ,

554:1216, 2001.

[Dub94] J. Dubinski. “The effect of dissipation on the shapes of dark halos”. ApJ, 431:617, 1994.

[dV48] G. de Vaucouleurs. “Title?”. Ann d’Ap, 11:247, 1948.

[Fab89] G. Fabbiano. “X-rays from normal galaxies”. ARA&A, 27:87, 1989.

[FGS85] E. E. Falco, M. V. Gorenstein, and I. I. Shapiro. “On model-dependent bounds on H0

from gravitational images: Application to Q0957+561A,B”. ApJ, 289:L1, 1985.

96

[FTA+97] S. M. Faber, S. Tremaine, E. A. Ajhar, Y.-I. Byun, A. Dressler, K. Gebhardt, C. Grill-

mair, J. Kormendy, T. R. Lauer, and D. Richstone. “The centers of early-type galaxies

with HST. IV. Central parameter relations”. AJ, 114:1771, 1997.

[GK02] G. Golse and J.-P. Kneib. “Pseudo elliptical lensing mass model: Application to the

NFW mass distribution”. A&A, 390:821, 2002.

[GL92] A. Gould and A. Loeb. “Discovering planetary systems through gravitational mi-

crolenses”. ApJ, 396:104, 1992.

[HB94] D. W. Hogg and R. D. Blandford. “The gravitational lens system B1422+231: Dark

matter, superluminal expansion, and the Hubble constant”. MNRAS, 268:889, 1994.

[Her90] L. Hernquist. “An analytical model for spherical galaxies and bulges”. ApJ, 356:359,

1990.

[IFK+98] C. D. Impey, E. E. Falco, C. S. Kochanek, J. Lehár, B. A. McLeod, H.-W. Rix,

C. Y. Peng, and C. R. Keeton. “An infrared Einstein ring in the gravitational lens

PG 1115+080”. ApJ, 509:551, 1998.

[Jaf83] W. Jaffe. “A simple model for the distribution of light in spherical galaxies”. MNRAS,

202:995, 1983.

[JS00] Y. P. Jing and Y. Suto. “The density profiles of the dark matter halo are not universal”.

ApJL, 529:L69, 2000.

[KBLN89] C. S. Kochanek, R. D. Blandford, C. R. Lawrence, and R. Narayan. “The Ring Cycle:

An interative lens reconstruction tehnique applied to MG 1131+0456”. MNRAS, 238:43,

1989.

[KCBL97] T. Kundić, J. G. Cohen, R. D. Blandford, and L. M. Lubin. “Keck spectroscopy of the

gravitational lens system PG 1115+080: Redshifts of the lensing galaxies”. AJ, 114:507,

1997.

[Kee01a] C. R. Keeton. A catalog of mass models for gravitational lensing, 2001. Preprint (astro-

ph/0102341).

[Kee01b] C. R. Keeton. Computational methods for gravitational lensing, 2001. Preprint (astro-

ph/0102340).

[Kee02] C. R. Keeton. Lensing and the centers of distant early-type galaxies, 2002. ApJ sub-

mitted.

97

[KF99] L. V. E. Koopmans and C. D. Fassnacht. “A determination of H0 with the CLASS

gravitational lens B1608+656. II. Mass models and the Hubble constant from lensing”.

ApJ, 527:513, 1999.

[KFI+00] C. R. Keeton, E. E. Falco, C. D. Impey, C. S. Kochanek, J. Lehár, B. A. McLeod, H.-W.

Rix, J. A. Muñoz, and C. Y. Peng. “The host galaxy of the lensed quasar Q0957+561”.

ApJ, 542:74, 2000.

[KHB+97] T. Kundić, D. W. Hogg, R. D. Blandford, J. G. Cohen, and L. M. Lubin. “The external

shear acting on gravitational lens B1422+231”. AJ, 114:2276, 1997.

[KK97] C. R. Keeton and C. S. Kochanek. “Determining the Hubble constant from the gravi-

tational lens PG 1115+080”. ApJ, 487:42, 1997.

[KK98] C. R. Keeton and C. S. Kochanek. “Gravitational lensing by spiral galaxies”. ApJ,

495:157, 1998.

[KKF98] C. R. Keeton, C. S. Kochanek, and E. E. Falco. “The optical properties of gravitational

lens galaxies as a probe of galaxy structure and evolution”. ApJ, 509:561, 1998.

[KKM01] C. S. Kochanek, C. R. Keeton, and B. A. McLeod. “The importance of Einstein rings”.

ApJ, 547:50, 2001.

[KKS97] C. R. Keeton, C. S. Kochanek, and U. Seljak. “Shear and ellipticity in gravitational

lenses”. ApJ, 482:604, 1997.

[KM01] C. R. Keeton and P. Madau. “Lensing constraints on the cores of massive dark matter

halos”. ApJL, 549:L25, 2001.

[KN92] C. S. Kochanek and R. Narayan. “LensClean: An algorithm for inverting extended,

gravitationally lensed images with application to the radio ring PKS 1830−211”. ApJ,

401:461, 1992.

[Koc91a] C. S. Kochanek. “The implications of lenses for galaxy structure”. ApJ, 373:354, 1991.

[Koc91b] C. S. Kochanek. “Systematic effects in lens inversions: ℵ1 exact models for 0957+561”.

ApJ, 382:58, 1991.

[Koc93] C. S. Kochanek. “The analysis of gravitational lens surveys. I. Selection functions and

ambiguous candidates”. ApJ, 419:12, 1993.

[Koc95] C. S. Kochanek. “Evidence for dark matter in MG 1654+134”. ApJ, 445:559, 1995.

[Koc96] C. S. Kochanek. “Is there a cosmological constant?”. ApJ, 466:638, 1996.

98

[Koc02] C. S. Kochanek. “What do gravitational lens time delays measure?”. ApJ, 578:25, 2002.

[LAB+95] T. R. Lauer, E. A. Ajhar, Y.-I. Byun, A. Dressler, S. M. Faber, C. Grillmair, J. Kor-

mendy, D. Richstone, and S. Tremaine. “The centers of early-type galaxies with HST.

I. An observational survey”. AJ, 110:2622, 1995.

[MBM03] M. Meneghetti, M. Bartelmann, and L. Moscardini. “Cluster cross-sections for strong

lensing: analytic and numerical lens models”. MNRAS, 340:105, 2003.

[MFD+95] S. T. Myers, C. D. Fassnacht, S. G. Djorgovski, R. D. Blandford, K. Matthews,

G. Neugebauer, T. J. Pearson, A. C. S. Readhead, J. D. Smith, D. J. Thompson, D. S.

Womble, I. W. A. Browne, P. N. Wilkinson, S. Nair, N. Jackson, I. A. G. Snellen, G. K.

Miley, A. G. de Bruyn, and R. T. Schilizzi. “1608+656: A quadruple-lens system found

in the CLASS gravitational lens survey”. ApJL, 447:L5, 1995.

[MFP97] A. H. Maller, R. A. Flores, and J. R. Primack. “Inclination effects in spiral galaxy

gravitational lensing”. ApJ, 486:681, 1997.

[MGQ+98] B. Moore, F. Governato, T. Quinn, J. Stadel, and G. Lake. “Resolving the structure of

cold dark matter halos”. ApJL, 499:L5, 1998.

[MnKK00] J. A. Muñoz, C. S. Kochanek, and C. R. Keeton. Cuspy mass models for gravitational

lenses, 2000. in preparation.

[MP91] S. Mao and B. Paczyński. “Gravitational microlensing by double stars and planetary

systems”. ApJL, 374:L37, 1991.

[MQG+99] B. Moore, T. Quinn, F. Governato, J. Stadel, and G. Lake. “Cold collapse and the core

catastrophe”. MNRAS, 310:1147, 1999.

[MR93] D. Maoz and H.-W. Rix. “Early-type galaxies, dark halos, and gravitational lensing

statistics”. ApJ, 416:425, 1993.

[MS98] S. Mao and P. Schneider. “Evidence for substructure in lens galaxies?”. MNRAS,

295:587, 1998.

[NFW96] J. F. Navarro, C. S. Frenk, and S. D. M. White. “The structure of cold dark matter

halos”. ApJ, 462:563, 1996.

[NFW97] J. F. Navarro, C. S. Frenk, and S. D. M. White. “A universal density profile from

hierarchical clustering”. ApJ, 490:493, 1997.

99

[OLS03] M. Oguri, J. Lee, and Y. Suto. “Arc statistics in triaxial dark matter halos: Testing the

collisionless cold dark matter paradigm”. ApJ, 599:7, 2003.

[PTVF92] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. Numerical Recipes

in C: The Art of Scientific Computing. Cambridge Univ. Press, New York, second

edition, 1992.

[RdZC+97] H.-W. Rix, P. T. de Zeeuw, C. M. Carollo, N. Cretton, and R. P. van der Marel.

“Dynamical modeling of velocity profiles: The dark halo around the elliptical galaxy

NGC 2434”. ApJ, 488:702, 1997.

[RFT78] V. C. Rubin, W. K. Ford, and N. Thonnard. “Extended rotation curves of high-

luminosity spiral galaxies. IV. systematic dynamical properties, Sa → Sc”. ApJL,

225:L107, 1978.

[RFT80] V. C. Rubin, W. K. Ford, and N. Thonnard. “Rotational properties of 21 Sc galaxies

with a large range of luminosities and radii, from NGC 4605 (R = 4 kpc) to UGC 2885

(R = 122 kpc)”. ApJ, 238:471, 1980.

[RGM+00] E. Ros, J. C. Guirado, J. M. Marcaide, M. A. Pérez-Torres, E. E. Falco, J. A. Muñoz,

A. Alberdi, and L. Lara. “VLBI imaging of the gravitational lens MG J0414+0534”.

A&A, 362:845, 2000.

[RM01] D. Rusin and C.-P. Ma. “Constraints on the inner mass profiles of lensing galaxies from

missing odd images”. ApJL, 549:L33, 2001.

[SBB+97] P. L. Schechter, C. D. Bailyn, R. Barr, R. Barvainis, C. M. Becker, G. M. Bernstein,

J. P. Blakeslee, S. J. Bus, A. Dressler, E. E. Falco, R. A. Fesen, P. Fischer, K. Gebhardt,

D. Harmer, J. N. Hewitt, J. Hjorth, T. Hurt, A. O. Jaunsen, M. Mateo, D. Mehlert,

D. O. Richstone, L. S. Sparke, J. R. Thorstensen, J. L. Tonry, G. Wegner, D. W.

Willmarth, and G. Worthey. “The quadruple gravitational lens PG 1115+080: Time

delays and models”. ApJL, 475:L85, 1997.

[Sch90] T. Schramm. “Realistic elliptical potential wells for gravitational lens models”. A&A,

231:19, 1990.

[SEF92] P. Schneider, J. Ehlers, and E. E. Falco. Gravitational Lenses. Springer, Berlin, 1992.

[SW91] P. Schneider and A. Weiss. “A practical approach to (nearly) elliptical gravitational

lens models”. A&A, 247:269, 1991.

100

[Ton98] J. L. Tonry. “Redshifts of the gravitational lenses B1422+231 and PG 1115+080”. AJ,

115:1, 1998.

[WKN96] S. Wallington, C. S. Kochanek, and R. Narayan. “LensMEM: A gravitational lens

inversion algorithm using the Maximum Entropy Method”. ApJ, 465:64, 1996.

[WM97] H. J. Witt and S. Mao. “Probing the structure of lensing galaxies with quadruple lenses:

the effect of ‘external’ shear”. MNRAS, 291:211, 1997.

[WN93] S. Wallington and R. Narayan. “The influence of core radius on gravitational lensing

by elliptical galaxies”. ApJ, 403:517, 1993.

[WP94] J. Wambsganss and B. Paczyński. “Parameter degeneracy in models of the quadruple

lens system Q2237+0305”. AJ, 108:1156, 1994.

[WTS01] J. S. B. Wyithe, E. L. Turner, and D. N. Spergel. “Gravitational lens statistics for

generalized NFW profiles: Parameter degeneracy and implications for self-interacting

cold dark matter”. ApJ, 555:504, 2001.

[Zha96] H.-S. Zhao. “Analytic models for galactic nuclei”. MNRAS, 278:488, 1996.

[ZP01] H.-S. Zhao and D. Pronk. “Systematic uncertainties in gravitational lensing models: a

semi-analytical study of PG 1115+080”. MNRAS, 320:401, 2001.

101

