Strong Lens Modeling (III): Advanced Techniques

Chuck Keeton

Rutgers, the State University of New Jersey

Q0957

Data Model Basic results Priors: SPS Priors: Ho

HE0435

Statistics Smooth models Few-clump models Pop'n models

Extended Sources

Linear mapping Lensing operator Regularization Reconstruction Examples

Free-form Models

Multipole Multipole/Taylor Mass pixels

Othe

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ 二臣 - のへで

Goals

point sources + parametric lens models

- composite models
- astrophysical priors
- substructure
- statistical techniques

extended sources

free-form lens models

Q095

Data Model Basic results Priors: SPS Priors: Ho

HE0435

Statistics Smooth models Few-clump models Pop'n models

Extended Sources

Linear mapping Lensing operator Regularization Reconstruction Examples

Free-form Models

Multipole Multipole/Taylor Mass pixels

Othe

Case studies

What can you do with advanced analyses of point sources and parametric lens models?

Q0957+561

- sophisticated composite models
- use of astrophysical priors
- MCMC

HE 0435-1223

- substructure
- statistical methods
- nested sampling

(work led by Ross Fadely)

Q095

Data Model Basic results Priors: SPS Priors: Ho

HE0435

Statistics Smooth models Few-clump models Pop'n models

Extended Sources

Linear mapping Lensing operator Regularization Reconstruction Examples

Free-form Models

Multipole Multipole/Taylor Mass pixels

Othe

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ → ヨ → の Q @

Q0957+561

Fadely et al. 2010ApJ...711..246F

Figure: (*Left*) Central 30'' of combined HST F606W and F814W images. (*Right*) Close-up of the strong lensing region, after the main lensing galaxy and quasar images have been subtracted.

Q095

Data Model Basic results Priors: SPS Priors: H₀

HE0435

Statistics Smooth models Few-clump models Pop'n models

Extended Sources

Linear mapping Lensing operator Regularization Reconstruction Examples

Free-form Models

Multipole Multipole/Taylor Mass pixels

Lensed features

Figure: Sets of multiple images — all told, 30 images of 14 sources.

Q0957

Data

Model Basic results Priors: SPS Priors: H_0

HE0435

Statistics Smooth models Few-clump models Pop'n models

Extended Sources

Linear mapping Lensing operator Regularization Reconstruction Examples

Free-form Models

Multipole Multipole/Taylor Mass pixels

Othe

・ロト ・ 日・ ・ 田・ ・ 日・ ・ 日・

Properties of main lens galaxy

Figure: Ellipticity and position angle of galaxy isophotes.

Q095

Data

Model Basic results Priors: SPS Priors: H₀

HE0435

Statistics Smooth models Few-clump models Pop'n models

Extended Sources

Linear mapping Lensing operator Regularization Reconstruction Examples

Free-form Models

Multipole Multipole/Taylor Mass pixels

Components of mass model

Stellar component: observed light distribution

► stellar mass-to-light ratio Υ

Dark matter halo: NFW or softened power law

- normalization
- scale radius
- ellipticity and position angle

Environment: cluster surrounding main lens galaxy

$$\phi_{\rm env}(r,\theta) = \frac{\kappa_c}{2} r^2 + \frac{\gamma}{2} r^2 \cos 2(\theta - \theta_{\gamma}) + \frac{\sigma}{4} r^3 \cos(\theta - \theta_{\sigma}) + \frac{\delta}{6} r^3 \cos 3(\theta - \theta_{\delta}) + \dots$$

- shear $(\gamma, \theta_{\gamma})$, higher-order terms $(\sigma, \theta_{\sigma}, \delta, \theta_{\delta})$
- \blacktriangleright mass sheet κ_c constrained with separate weak lensing analysis

Q095

Data Model

Basic results Priors: SPS Priors: Ho

HE0435

Statistics Smooth models Few-clump models Pop'n models

Extended Sources

Linear mapping Lensing operator Regularization Reconstruction Examples

Free-form Models

Multipole Multipole/Taylor Mass pixels

Other

Searching parameter space

Full set of parameters:

- 11 mass model parameters searched explicitly (MCMC)
- ▶ 28 source position parameters optimized analytically
- ► *H*⁰ from time delay

Q095

Data Model

Basic results Priors: SPS Priors: Ho

HE0435

Statistics Smooth models Few-clump models Pop'n models

Extended Sources

Linear mapping Lensing operator Regularization Reconstruction Examples

Free-form Models

Multipole Multipole/Taylor Mass pixels

Othe

Softened power law halo with isothermal profile ($\alpha = 1$)

Q095

Data

Basic results

Priors: SPS Priors: Ho

HE0435

Statistics Smooth models Few-clump models Pop'n models

Extended Sources

Linear mapping Lensing operator Regularization Reconstruction Examples

Free-form Models

Multipole Multipole/Taylor Mass pixels

Other

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへの

Softened power law halo with steeper profile ($\alpha = 0.5$)

Q095

Data

Basic results

Priors: SPS Priors: Ho

HE0435

Statistics Smooth models Few-clump models Pop'n models

Extended Sources

Linear mapping Lensing operator Regularization Reconstruction Examples

Free-form Models

Multipole Multipole/Taylor Mass pixels

Other

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへの

Softened power law halo with shallower profile ($\alpha = 1.5$)

Q095

Data

Basic results

Priors: SPS Priors: Ho

HE0435

Statistics Smooth models Few-clump models Pop'n models

Extended Sources

Linear mapping Lensing operator Regularization Reconstruction Examples

Free-form Models

Multipole Multipole/Taylor Mass pixels

Other

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへの

NFW halo

Q095

Data

Basic results

Priors: SPS Priors: Ho

HE0435

Statistics Smooth models Few-clump models Pop'n models

Extended Sources

Linear mapping Lensing operator Regularization Reconstruction Examples

Free-form Models

Multipole Multipole/Taylor Mass pixels

Othe

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへの

Density profile

Deflection curve, $\alpha(r) \propto M(r)/r$ — 2-d analog of rotation curve

Trade-off between stars and dark matter changes density profile

Rising deflection curve \Rightarrow density profile shallower than isothermal. Due to massive cluster around lens?

Q0957

Data Model

Basic results

Priors: SPS Priors: Ho

HE0435

Statistics Smooth models Few-clump models Pop'n models

Extended Sources

Linear mapping Lensing operator Regularization Reconstruction Examples

Free-form Models

Multipole Multipole/Taylor Mass pixels

Additional information – priors

Stellar mass-to-light ratio is not totally unknown.

Can predict it using Stellar Population Synthesis (SPS) models.

- generate a population of stars at some time
- ▶ stellar evolution models \rightarrow predict how pop'n evolves
- stellar atmospheres \rightarrow predict spectrum as a function of time
- include star formation history \rightarrow predict galaxy spectrum

e.g., Bruzual & Charlot 2003MNRAS.344.1000B; Maraston et al. 2009MNRAS.394L.107M; Conroy et al. 2009ApJ...699..486C

Fit SPS models to observed galaxy colors, constrain Υ .

Note: analysis depends on H_0 through time vs. redshift.

Q095

Data Model Basic results Priors: SPS

Priors: H_0

HE0435

Statistics Smooth models Few-clump models Pop'n models

Extended Sources

Linear mapping Lensing operator Regularization Reconstruction Examples

Free-form Models

Multipole Multipole/Taylor Mass pixels

Combined constraints on H_0

SPS constraints $\rightarrow H_0 = 79.3^{+6.7}_{-8.5} \text{ km s}^{-1} \text{ Mpc}^{-1}$ (68% CL)

▲ロト ▲冊ト ▲ヨト ▲ヨト ヨー わんぐ

Q095

Data Model Basic results

Priors: SPS

HE0435

Statistics Smooth models Few-clump models Pop'n models

Extended Sources

Linear mapping Lensing operator Regularization Reconstruction Examples

Free-form Models

Multipole Multipole/Taylor Mass pixels

Priors on H_0

Instead of trying to recover H_0 , we could place priors from independent measurements.

Distance ladder (Riess et al. 2009ApJ...699..539R):

 $H_0 = 74.2 \pm 3.6 \text{ km s}^{-1} \text{ Mpc}^{-1}$

WMAP5+SNe+BAO (Komatsu et al. 2009ApJS..180..330K):

 $H_0 = 70.5 \pm 1.3 \text{ km s}^{-1} \text{ Mpc}^{-1}$

Q0957

Data Model Basic results Priors: SPS Priors: H0

Statistics Smooth models Few-clump models Pop'n models

Extended Sources

Linear mapping Lensing operator Regularization Reconstruction Examples

Free-form Models

Multipole Multipole/Taylor Mass pixels

Other

Stellar mass-to-light ratio

From lensing, using priors on H_0 :

$$\begin{split} &\Upsilon = 5.5^{+0.9}_{-0.5} & (\text{distance ladder priors}) \\ &\Upsilon = 5.5^{+0.2}_{-0.3} & (\text{WMAP5+SNe+BAO priors}) \end{split}$$

SPS models:

$$\Upsilon = 5.9 \pm 1.9$$

Use lensing to constrain stellar populations?!

Q095

Data Model Basic results Priors: SPS

Priors: H_0

HE0435

Statistics Smooth models Few-clump models Pop'n models

Extended Sources

Linear mapping Lensing operator Regularization Reconstruction Examples

Free-form Models

Multipole Multipole/Taylor Mass pixels

Othe

HE 0435-1223

Constraints

- HST positions, $\sigma = 3-5$ mas
- optical/IR fluxes, $\sigma \sim 5\%$
- (time delays, $\sigma = 0.8$ d)

Q0957

Data Model Basic results Priors: SPS Priors: H₀

HE0435

Statistics Smooth models Few-clump models Pop'n models

Extended Sources

Linear mapping Lensing operator Regularization Reconstruction Examples

Free-form Models

Multipole Multipole/Taylor Mass pixels

Othe

(Fadely & CRK 2011AJ....141..101F, 2012MNRAS.419..936F)

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 のへの

Statistics: Comparing models

Bayesian evidence allows objective model comparison, even with different numbers of parameters.

$$Z(M) = \int \mathcal{L}(d|\mathbf{q}, M) \ P(\mathbf{q}, M) \ d\mathbf{q}$$

Compare two models via Z_2/Z_1 or $\log_{10}(Z_2/Z_1) = \Delta \log_{10}(Z)$.

Jeffreys (1961) scale:

$\Delta \log_{10}(Z)$	Significance
0–0.5	Barely worth mentioning
0.5-1.0	Substantial
1.0 - 1.5	Strong
1.5-2.0	Very strong
> 2.0	Decisive

Q0957

Data Model Basic results Priors: SPS Priors: H₀

HE0435

Statistics

Smooth models Few-clump models Pop'n models

Extended Sources

Linear mapping Lensing operator Regularization Reconstruction Examples

Free-form Models

Multipole Multipole/Taylor Mass pixels

HE0435: Smooth mass models

parameters

- main galaxy: mass, position, e/PA, core radius, profile (7)
- neighbor galaxy: mass, position, e/PA (5)
- rest of environment: shear/PA (2)
- source: position, flux (3)

data

- images: positions, fluxes (12)
- main galaxy: position (2)
- neighbor galaxy: position (2)

Q095

Data Model Basic results Priors: SPS Priors: Ho

HE0435

Statistics Smooth models

Few-clump models Pop'n models

Extended Sources

Linear mapping Lensing operator Regularization Reconstruction Examples

Free-form Models

Multipole Multipole/Taylor Mass pixels

Othe

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ → ヨ → の Q @

HE0435: Smooth mass models

16 constraints, 17 parameters — but best $\chi^2 = 24.6$ (!)

Q0957

Data Model Basic results Priors: SPS Priors: Ho

HE043

Statistics Smooth models Few-clump models

Extended Sources

Linear mapping Lensing operator Regularization Reconstruction Examples

Free-form Models

Multipole Multipole/Taylor Mass pixels

Othe

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ 三里 - のへぐ

HE0435: Smooth mass models

16 constraints, 17 parameters — but best $\chi^2 = 24.6$ (!)

Q0957

Data Model Basic results Priors: SPS Priors: H₀

HE043

Statistics Smooth models Few-clump models Pap'n models

Extended Sources

Linear mapping Lensing operator Regularization Reconstruction Examples

Free-form Models

Multipole Multipole/Taylor Mass pixels

Othe

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ → ヨ → の Q @

With mass clump(s)

Add one clump near image A. Add three clumps near images A, B, D. Clumps are truncated isothermal spheres.

Q095

Data Model Basic results Priors: SPS Priors: Ho

HE0435

Statistics Smooth models Few-clump models

Extended Sources

Linear mapping Lensing operator Regularization Reconstruction Examples

Free-form Models

Multipole Multipole/Taylor Mass pixels

Othe

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Position of clump A

95% confidence limits

- \blacktriangleright dotted: $M < 10^6\,M_{\odot}$
- ▶ dashed: $M < 10^7 M_{\odot}$
- ▶ solid: $M < 10^8 M_{\odot}$

Q095

Data Model Basic results Priors: SPS Priors: Ho

HE043

Statistics Smooth models Few-clump models

Extended Sources

Linear mapping Lensing operator Regularization Reconstruction Examples

Free-form Models

Multipole Multipole/Taylor Mass pixels

Othe

▲ロト ▲御ト ▲ヨト ▲ヨト 三回 - のへの

Posterior parameter constraints

68% and 95% confidence intervals

- solid: smooth model
- dashed: + clump A

Q0957

Data Model Basic results Priors: SPS Priors: Ho

HE043

Statistics Smooth models Few-clump models

Extended Sources

Linear mapping Lensing operator Regularization Reconstruction Examples

Free-form Models

Multipole Multipole/Taylor Mass pixels

Other

▲□ > ▲□ > ▲目 > ▲目 > ▲目 > ④ < ④

Statistical significance of clump(s)

Use nested sampling to compute Bayesian evidence and compare different models.

model	$\Delta \log_{10}(Z)$
smooth	$\equiv 0$
clump A	3.83 ± 0.12
clumps AD	3.90 ± 0.13
clumps AB	4.46 ± 0.12
clumps ABD	4.35 ± 0.13

Decisive evidence for a clump near image A.

 $\log_{10}(M_{\rm ein}^A) = 7.65^{+0.87}_{-0.84} \qquad \log_{10}(M_{\rm tot}^A) = 9.31^{+0.44}_{-0.42}$

Intriguing evidence for a second clump near image B.

 $\log_{10}(M_{\rm ein}^B) = 6.55^{+1.01}_{-1.51} \qquad \log_{10}(M_{\rm tot}^B) = 8.76^{+0.50}_{-0.77}$

Q0957

Data Model Basic results Priors: SPS Priors: Ho

HE0435

Statistics Smooth models Few-clump models

Extended Sources

Linear mapping Lensing operator Regularization Reconstruction Examples

Free-form Models

Multipole Multipole/Taylor Mass pixels

Other

Full population of clumps

It seems unlikely that the lens galaxy contains one or two clumps that are (almost) perfectly aligned with the quasar images.

More likely: they are "special" representatives of a larger pop'n.

Try to constrain the population directly

assume truncated isothermal spheres with mass function

$$\frac{dN}{dm} \propto m^{-1.9}, \qquad m \in 10^7 \text{--} 10^{10} \, M_{\odot}$$

▶ see whether models make sense, constrain $\kappa_s = \sum_s / \sum_{crit}$

Q0957

Data Model Basic results Priors: SPS Priors: H₀

HE0435

Statistics Smooth models Few-clump models Pop'n models

Extended Sources

Linear mapping Lensing operator Regularization Reconstruction Examples

Free-form Models

Multipole Multipole/Taylor Mass pixels

Othe

Statistical inference

Parameters

- ▶ q = smooth model
- s = substructure *population* (abundance, mass function, etc.)
- c = individual clumps (position, mass, etc.)

Most interested in marginalized posterior for substructure population parameters:

$$P(s) \propto \int \mathcal{L}(c,q) \ P(c|s) \ P(s,q) \ dc \ dq$$

Q0957

Data Model Basic results Priors: SPS Priors: Ho

HE0435

Statistics Smooth models Few-clump models Pop'n models

Extended Sources

Linear mapping Lensing operator Regularization Reconstruction Examples

Free-form Models

Multipole Multipole/Taylor Mass pixels

Othe

Monte Carlo techniques

Need to evaluate

$$P(s) \propto \int \mathcal{L}(c,q) \ P(c|s) \ P(s,q) \ dc \ dq$$

We can't do the c integral explicitly!

Use Monte Carlo integration: let c_j be a realization of the clump population, drawn from P(c|s). Then

$$P(s) \propto \sum_{j} \int \mathcal{L}(c_j, q) \ P(s, q) \ dq$$

Q0957

Data Model Basic results Priors: SPS Priors: Ho

HE0435

Statistics Smooth models Few-clump models Pop'n models

Extended Sources

Linear mapping Lensing operator Regularization Reconstruction Examples

Free-form Models

Multipole Multipole/Taylor Mass pixels

Othe

$$P(s) \propto \sum_{j} \int \mathcal{L}(c_j, q) \ P(s, q) \ dq$$

For each c_j , what do we do with q?

- Marginalize = do the integral, find the area
- Optimize = just find the **peak**

They are not necessarily equivalent!

Q095

Data Model Basic results Priors: SPS Priors: H₀

HE0435

Statistics Smooth models Few-clump models Pop'n models

Extended Sources

Linear mapping Lensing operator Regularization Reconstruction Examples

Free-form Models

Multipole Multipole/Taylor Mass pixels

Each point is one realization of clump pop'n; $\mathcal{L}_{\mathrm{peak}} = e^{-\chi^2/2}$

Q0957

Data Model Basic results Priors: SPS Priors: H₀

HE0435

Statistics Smooth models Few-clump models Pop'n models

Extended Sources

Linear mapping Lensing operator Regularization Reconstruction Examples

Free-form Models

Multipole Multipole/Taylor Mass pixels

Othe

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Each point is one realization of clump pop'n; $\mathcal{L}_{\rm peak}=e^{-\chi^2/2}$

Q0957

Data Model Basic results Priors: SPS Priors: H₀

HE0435

Statistics Smooth models Few-clump models Pop'n models

Extended Sources

Linear mapping Lensing operator Regularization Reconstruction Examples

Free-form Models

Multipole Multipole/Taylor Mass pixels

Othe

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Each point is one realization of clump pop'n; $\mathcal{L}_{\rm peak}=e^{-\chi^2/2}$

Q0957

Data Model Basic results Priors: SPS Priors: H₀

HE0435

Statistics Smooth models Few-clump models Pop'n models

Extended Sources

Linear mapping Lensing operator Regularization Reconstruction Examples

Free-form Models

Multipole Multipole/Taylor Mass pixels

Othe

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Results

Recall: $dN/dm \propto m^{-1.9}$ for $m \in 10^7 \text{--} 10^{10} M_{\odot}$

Q095

Data Model Basic results Priors: SPS Priors: H₀

HE0435

Statistics Smooth models Few-clump models Pop'n models

Extended Sources

Linear mapping Lensing operator Regularization Reconstruction Examples

Free-form Models

Multipole Multipole/Taylor Mass pixels

Othe

Extended source lenses: Arcs and rings

Figure: Arcs and rings from SLACS (http://www.slacs.org).

Q0957

Data Model Basic results Priors: SPS Priors: H₀

HE0435

Statistics Smooth models Few-clump models Pop'n models

Extended Sources

Linear mapping Lensing operator Regularization Reconstruction Examples

Free-form Models

Multipole Multipole/Taylor Mass pixels

Othe

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへぐ

Source reconstruction

Figure: Example of source reconstruction in a SLACS lens (Bolton et al. 2008ApJ...682..964B)

Q0957

Data Model Basic results Priors: SPS Priors: H₀

HE0435

Statistics Smooth models Few-clump models Pop'n models

Extended Sources

Linear mapping Lensing operator Regularization Reconstruction Examples

Free-form Models

- Multipole Multipole/Taylor Mass pixels
- Othe

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへぐ

Source reconstruction

Figure: Example of source reconstruction in a SLACS lens (Bolton et al. 2008ApJ...682..964B)

Q0957

Data Model Basic results Priors: SPS Priors: H₀

HE0435

Statistics Smooth models Few-clump models Pop'n models

Extended Sources

Linear mapping Lensing operator Regularization Reconstruction Examples

Free-form Models

Multipole Multipole/Taylor Mass pixels

Othe

・ロト ・ 日・ ・ 田・ ・ 日・ ・ 日・

Lensing conserves surface brightness

Data

Model Basic results Priors: SPS Priors: H₀

HE0435

Statistics Smooth models Few-clump models Pop'n models

Extended Sources

Linear mapping

Lensing operator Regularization Reconstruction Examples

Free-form Models

Multipole Multipole/Taylor Mass pixels

Othe

 $\mathbf{d} = \mathbf{L}\,\mathbf{s}$

"Unfold" 2-d image into vector

Q095

Data Model Basic results Priors: SPS Priors: Ho

HE0435

Statistics Smooth models Few-clump models Pop'n models

Extended Sources

Linear mapping Lensing operator Regularization Reconstruction

Free-form Models

Multipole Multipole/Taylor Mass pixels

Pixelated sources

pure surface brightness map:

 $\mathbf{d} = \mathbf{L}_0 \, \mathbf{s}$

with PSF:

 $\mathbf{d} = \mathbf{L} \, \mathbf{s}$ where $\mathbf{L} = \mathbf{B} \, \mathbf{L}_0$

Q0957

Data Model Basic results Priors: SPS Priors: Ho

HE0435

Statistics Smooth models Few-clump models Pop'n models

Extended Sources

Linear mapping

Lensing operator Regularization Reconstruction Examples

Free-form Models

Multipole Multipole/Taylor Mass pixels

Othe

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ 二臣 - のへで

goodness of fit:

$$\chi^2_{\rm img} = (\mathbf{L}\,\mathbf{s} - \mathbf{d}^{\rm obs})^t\,\mathbf{S}_d^{-1}\,(\mathbf{L}\,\mathbf{s} - \mathbf{d}^{\rm obs})$$

in general, more parameters than constraints, so a large family of solutions

many of the solutions may be unphysical (e.g., lots of negative flux) or merely implausible (e.g., spikes or weird shapes)

Q0957

Data Model Basic results Priors: SPS Priors: H₀

HE0435

Statistics Smooth models Few-clump models Pop'n models

Extended Sources

Linear mapping Lensing operator Regularization Reconstruction

Free-form Models

Multipole Multipole/Taylor Mass pixels

Regularization

goal: penalize models that are unrealistic

penalize spikes

$$\chi^2_{
m reg} \sim \sum s_j^2 = {f s}^t \, {f s}$$

 \blacktriangleright penalize large gradients: finite differencing $\rightarrow {\bf v} = {\bf H}_v {\bf s}$ so

 $\chi^2_{\rm reg} \sim \mathbf{v}^t \mathbf{v} \sim \mathbf{s}^t \, \mathbf{H}_v^t \, \mathbf{H}_v \, \mathbf{s}$

 \blacktriangleright penalize large curvature: again finite differencing \rightarrow

 $\chi^2_{\rm reg} \sim \mathbf{s}^t \, \mathbf{H}_a^t \, \mathbf{H}_a \, \mathbf{s}$

all told, use penalty function of the form

$$\chi^2_{
m reg} \sim {f s}^t \, {f H}^t \, {f H} \, {f s}$$

Q0957

Data Model Basic results Priors: SPS Priors: H₀

HE0435

Statistics Smooth models Few-clump models Pop'n models

Extended Sources

Linear mapping Lensing operator Regularization Reconstruction Examples

Free-form Models

Multipole Multipole/Taylor Mass pixels

Othe

with quadratic regularization, full χ^2 is

$$\chi^2 = (\mathbf{L}\,\mathbf{s} - \mathbf{d}^{\text{obs}})^t \,\mathbf{S}_d^{-1} \,(\mathbf{L}\,\mathbf{s} - \mathbf{d}^{\text{obs}}) + \lambda_s \,\mathbf{s}^t \,\mathbf{H}^t \,\mathbf{H}\,\mathbf{s}$$

where λ_s controls the strength of the regularization:

- low $\lambda \rightarrow$ more emphasis on fit quality
- high $\lambda \rightarrow$ more emphasis on regularization

optimal source found analytically — solve $\nabla_{\mathbf{s}}\chi^2=0$ or

$$\left(\mathbf{L}^{t} \, \mathbf{S}_{d}^{-1} \, \mathbf{L} + \lambda_{s} \, \mathbf{H}^{t} \, \mathbf{H}\right) \mathbf{s} = \mathbf{L}^{t} \, \mathbf{S}_{d}^{-1} \, \mathbf{d}^{\text{obs}}$$

(Warren & Dye 2003; Dye & Warren 2005; Treu & Koopmans 2004; Koopmans 2005; Suyu et al. 2006; Vegetti & Koopmans 2009; coming "soon" to lensmodel)

Q0957

Data Model Basic results Priors: SPS Priors: H₀

HE0435

Statistics Smooth models Few-clump models Pop'n models

Extended Sources

Linear mapping Lensing operator Regularization

Reconstruction Examples

Free-form Models

Multipole Multipole/Taylor Mass pixels

Othe

・ロト ・ 日・ ・ 田・ ・ 日・ ・ 日・

Test case

Suyu et al. 2006MNRAS.371..983S

Q095

Data Model Basic results Priors: SPS Priors: Ho

HE0435

Statistics Smooth models Few-clump models Pop'n models

Extended Sources

Linear mapping Lensing operator Regularization Reconstruction

Examples

Free-form Models

Multipole Multipole/Taylor Mass pixels

Other

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 のへの

RX J1131-1231

Suyu et al. arXiv:1208.6010

Q095

Data Model Basic results Priors: SPS Priors: H₀

HE0435

Statistics Smooth models Few-clump models Pop'n models

Extended Sources

Linear mapping Lensing operator Regularization Reconstruction Examples

Eroo form Mode

Multipole Multipole/Taylor Mass pixels

Other

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

B1938+666

Vegetti et al. 2012Natur.481..341V

Q095

Data Model Basic results Priors: SPS Priors: H₀

HE0435

Statistics Smooth models Few-clump models Pop'n models

Extended Sources

Linear mapping Lensing operator Regularization Reconstruction Examples

Examples

Free-form Models

Multipole Multipole/Taylor Mass pixels

Other

Free-form mass models

expand potential or mass in terms of some basis functions

$$\phi(\mathbf{x}) = \sum_{\nu} a_{\nu} f_{\nu}(\mathbf{x})$$

parametric vs. non-parametric?

better: over- vs. under-constrained

Q0957

Data Model Basic results Priors: SPS Priors: Ho

HE0435

Statistics Smooth models Few-clump models Pop'n models

Extended Sources

Linear mapping Lensing operator Regularization Reconstruction Examples

Free-form Models

Multipole Multipole/Taylor Mass pixels

Othe

Constraint equations

theory:

$$\mathbf{u} = \mathbf{x} - \nabla \phi(\mathbf{x})$$

$$\Delta t_{ij} = t_0 \left[\frac{1}{2} \left(|\mathbf{x}_i - \mathbf{u}|^2 - |\mathbf{x}_j - \mathbf{u}|^2 \right) - \phi(\mathbf{x}_i) + \phi(\mathbf{x}_j) \right]$$

$$= t_0 \left[\frac{1}{2} \left(|\mathbf{x}_i|^2 - |\mathbf{x}_j|^2 \right) - (\mathbf{x}_i - \mathbf{x}_j) \cdot \mathbf{u} - \phi(\mathbf{x}_i) + \phi(\mathbf{x}_j) \right]$$

constraints from positions and time delays are linear in a_{ν} , \mathbf{u}^{mod} , and t_0^{-1} :

$$\sum_{\nu} a_{\nu} \nabla f_{\nu}(\mathbf{x}_{i}^{\text{obs}}) + \mathbf{u}^{\text{mod}} = \mathbf{x}_{i}^{\text{obs}}$$
$$\left\{ \sum_{\nu} a_{\nu} \left[f_{\nu}(\mathbf{x}_{i}^{\text{obs}}) - f_{\nu}(\mathbf{x}_{j}^{\text{obs}}) \right] + (\mathbf{x}_{i}^{\text{obs}} - \mathbf{x}_{j}^{\text{obs}}) \cdot \mathbf{u}^{\text{mod}} + t_{0}^{-1} \Delta t_{ij}^{\text{obs}} \right\} = \frac{1}{2} \left(|\mathbf{x}_{i}|^{2} - |\mathbf{x}_{j}|^{2} \right)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

Q0957

Data Model Basic results Priors: SPS Priors: H₀

HE0435

Statistics Smooth models Few-clump models Pop'n models

Extended Sources

Linear mapping Lensing operator Regularization Reconstruction Examples

Free-form Models

Multipole Multipole/Taylor Mass pixels

Other

Multipole models

assume isothermal profile but allow general angular structure

$$\phi_{\text{gal}}(r,\theta) = r \sum_{m=0}^{m_{\text{max}}} \left(a_m \cos m\theta + b_m \sin m\theta \right)$$

apply to a lens with anomalous flux ratios:

(Congdon & CRK 2005; also see Evans & Witt 2003; Yoo et al. 2005, 2006)

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Q0957

Data Model Basic results Priors: SPS Priors: H₀

HE0435

Statistics Smooth models Few-clump models Pop'n models

Extended Sources

Linear mapping Lensing operator Regularization Reconstruction Examples

Free-form Models

Multipole Multipole/Taylor Mass pixels

Multipole/Taylor models

generalize radial profile — images are often "near" Einstein radius, so do Taylor series expansion in $r - r_0$ (or equivalently $r/r_0 - 1$):

$$\phi(r,\theta) = \sum_{m=0}^{m_{\max}} \sum_{n=0}^{n_{\max}} \left(\frac{r}{r_0} - 1\right)^n \left(a_{mn}\cos m\theta + b_{mn}\sin m\theta\right)$$

Trotter et al. 2000ApJ...535..671T apply to MG J0414+0534

Q095

Data Model Basic results Priors: SPS Priors: H₀

HE0435

Statistics Smooth models Few-clump models Pop'n models

Extended Sources

Linear mapping Lensing operator Regularization Reconstruction Examples

Free-form Models

Multipole Multipole/Taylor Mass pixels

Other

Pixelated mass maps

mass pixels — "pixelens" (Saha & Williams 2000, 2004, etc.)

many free parameters — need priors:

- all pixel densities must be non-negative
- \blacktriangleright density gradient must point within 45° of lens center
- no pixel value may exceed the average of its neighbors by more than a factor of two (except for central pixel)
- projected density profile must be steeper than $r^{-1/2}$
- if desired, mass map may be required to have inversion symmetry

these eliminate models that are grossly unphysical, but are not especially restrictive

- \blacktriangleright non-negative Σ does not automatically imply non-negative ρ
- no check on number of images
- shapes may still be implausible

Q0957

Data Model Basic results Priors: SPS Priors: H₀

HE0435

Statistics Smooth models Few-clump models Pop'n models

Extended Sources

Linear mapping Lensing operator Regularization Reconstruction Examples

Free-form Models

Multipole Multipole/Taylor Mass pixels

examples from Saha & Williams 2004AJ....127.2604S

these show average solutions; can also explore range of solutions

Q0957

Data Model Basic results Priors: SPS Priors: Ho

HE0435

Statistics Smooth models Few-clump models Pop'n models

Extended Sources

Linear mapping Lensing operator Regularization Reconstruction Examples

Free-form Models

Multipole Multipole/Taylor Mass pixels

Other

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへぐ

Other

other effects I have not gone into...

pixelated potential corrections

(Suyu et al. 2009, 2010, 2012; Koopmans 2005; Vegetti et al. 2009, 2010, 2012)

complicated environments

(Wong et al. 2011)

line-of-sight effects (multi-plane lensing)

(Wong et al. 2011; Suyu et al. 2012)

Bottom line: "precision lensing" is hard work, but we are learning how to do it!

Q095

Data Model Basic results Priors: SPS Priors: Ho

HE0435

Statistics Smooth models Few-clump models Pop'n models

Extended Sources

Linear mapping Lensing operator Regularization Reconstruction Examples

Free-form Models

Multipole Multipole/Taylor Mass pixels

Other