Strong Lens Modeling (II): Statistical Methods

Chuck Keeton

Rutgers, the State University of New Jersey

Probability Theory

Likelihood

Bayesian Statistics

Inference Nuisance params Model comparison

MCMC

Simple steps Stopping Adaptive steps Step size Results

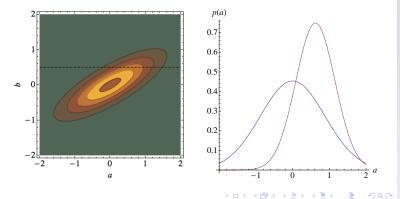
Nested Sampling

Drawing points Estimating volumes Algorithm Example

multiple random variables, \boldsymbol{a} and \boldsymbol{b}

joint distribution	p(a,b)
conditional distribution	p(a b)
marginal distribution	$p(a) = \int p(a, b) \ db$

note: p(a,b) = p(a|b) p(b)



Probability Theory

Likelihood

Bayesian Statistics

Inference Nuisance params Model comparison

мсмс

Simple steps Stopping Adaptive steps Step size Results

Nested Sampling

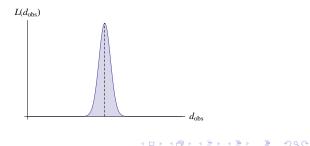
Likelihood

even if model is correct, measured data may not exactly match model predictions because of noise

1-d example: suppose model predicts $d^{\rm mod}$, and measured value follows a Gaussian distribution with uncertainty σ

$$\mathcal{L}(d^{\text{obs}}|d^{\text{mod}}) \propto \exp\left[-\frac{(d^{\text{obs}}-d^{\text{mod}})^2}{2\sigma^2}\right] \propto e^{-\chi^2/2}$$

call this the "likelihood of the data given the model"



Probability Theory

Likelihood

Bayesian Statistics

Inference Nuisance params Model comparison

мсмс

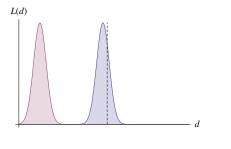
Simple steps Stopping Adaptive steps Step size Results

Nested Sampling

if model predictions depend on set of parameters q, write this as

$$\mathcal{L}(d^{\mathrm{obs}}|\mathbf{q}) \propto \exp\left[-rac{(d^{\mathrm{obs}} - d^{\mathrm{mod}}(\mathbf{q}))^2}{2\sigma^2}
ight]$$

how to use? when model is wrong, $d^{\rm obs}$ is far from $d^{\rm mod}$ so χ^2 is high and ${\cal L}$ is low; adjust model to reduce χ^2 and increase ${\cal L} \to {\rm maximum}$ likelihood method



Probability Theory

Likelihood

Bayesian Statistics

Inference Nuisance params Model comparison

мсмс

Simple steps Stopping Adaptive steps Step size Results

Nested Sampling

Drawing points Estimating volumes Algorithm Example

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ うへぐ

Bayesian inference

goal: see what we can infer about the parameters from the data; so shift from p(d|q) to p(q|d)

note:

$$p(d,q) = p(d|q) p(q) = p(q|d) p(d)$$

Bayes's theorem:

$$p(q|d) = \frac{p(d|q) p(q)}{p(d)}$$

idea: use the "posterior" to quantify constraints on the parameters

Probability Theory

Likelihood

Bayesian Statistics

Inference

Nuisance params Model comparison

мсмс

Simple steps Stopping Adaptive steps Step size Results

Nested Sampling

Drawing points Estimating volumes Algorithm Example

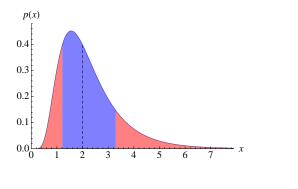
d

Quantifying constraints

how do we use p(q|d) to quantify parameter constraints?

could use μ and $\sigma;$ but those have specific meaning only for Gaussian distributions

better to generalize: median and 68% confidence interval



Probability Theory

Likelihood

Bayesian Statistics

Inference

Nuisance params Model comparison

мсмс

Simple steps Stopping Adaptive steps Step size Results

Nested Sampling

Drawing points Estimating volumes Algorithm Example

Nuisance parameters

suppose we have some joint p(a,b), but we are mainly interested in a

```
we say b is a "nuisance" parameter
```

probability theory lets us "integrate out" b to get **marginalized** distribution for a:

$$p(a) = \int p(a,b) \ db$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

in general, this is **not** the same as *optimizing* the nuisance parameter

Probability Theory

Likelihood

Bayesian Statistics

Nuisance params Model comparison

мсмс

Simple steps Stopping Adaptive steps Step size Results

Nested Sampling

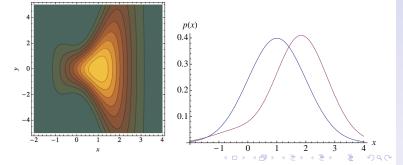
example:

$$p(x,y) \propto \exp\left[-\frac{(x-\mu_x)^2}{2\sigma_x^2}\right] \exp\left[-\frac{y^2}{2\sigma_y^2}\right]$$

with $\sigma_y = 1 + x^2$

optimize:
$$p(x) \propto \exp\left[-\frac{(x-\mu_x)^2}{2\sigma_x^2}\right]$$

marginalize: $p(x) \propto (1+x^2) \exp\left[-\frac{(x-\mu_x)^2}{2\sigma_x^2}\right]$



Likelihood Bayesian Statistics Inference Nuisance params

мсмс

Simple steps Stopping Adaptive steps Step size Results

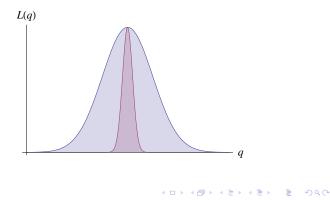
Nested Sampling

Model comparison

"evidence" quantifies overall probability of getting these data from this model:

$$Z \equiv p(d) = \int \mathcal{L}(d|q) \ p(q) \ dq$$

can be used to **compare different models** (even they have different numbers of parameters)



Probability Theory

Likelihood

Bayesian Statistics Inference Nuisance params Model comparison

мсмс

Simple steps Stopping Adaptive steps Step size Results

Nested Sampling

Monte Carlo Markov Chains

often it is inconvenient or even impossible to analyze full posterior

instead, turn to **statistical sampling**: set of points $\{\mathbf{q}_k\}$ drawn from the posterior

(for now: assume flat priors, so $p(\mathbf{q}) \propto \mathcal{L}(\mathbf{q})$)

MCMC method:

- pick some starting point q₁
- postulate some trial distribution, $p_{try}(\mathbf{q})$
- draw a *trial point*, q_{try} , from p_{try} ; probability to accept is

$$\min\left[\frac{\mathcal{L}(\mathbf{q}_{\mathrm{try}})}{\mathcal{L}(\mathbf{q}_{1})},1\right]$$

- ▶ if accept trial point, put $q_2 = q_{try}$; otherwise, put $q_2 = q_1$.
- iterate!

Probability Theory

Likelihood

ayesian Statistics

Inference Nuisance params Model comparison

мсмс

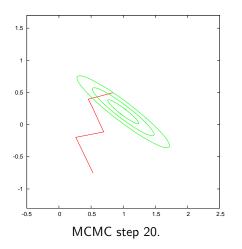
Simple steps Stopping Adaptive steps Step size Results

Nested Sampling

Drawing points Estimating volumes Algorithm Example

・ロト ・ 日・ ・ 田・ ・ 日・ ・ 日・

Let trial distribution be a simple Gaussian.



Probability Theory

Likelihood

Bayesian Statistics Inference Nuisance params Model comparison

мсмс

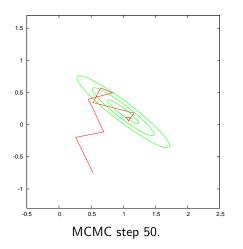
Simple steps

Adaptive step Step size Results

Nested Sampling

Drawing points Estimating volumes Algorithm Example

Let trial distribution be a simple Gaussian.



Probability Theory

Likelihood

Bayesian Statistics Inference Nuisance params Model comparison

мсмс

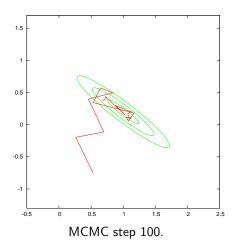
Simple steps

Stopping Adaptive step Step size Results

Nested Sampling

Drawing points Estimating volumes Algorithm Example

Let trial distribution be a simple Gaussian.



Probability Theory

Likelihood

Bayesian Statistics Inference Nuisance params Model comparison

мсмс

Simple steps

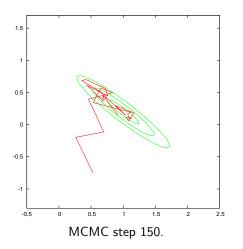
Stopping Adaptive step Step size Results

Nested Sampling

Drawing points Estimating volumes Algorithm Example

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Let trial distribution be a simple Gaussian.



Probability Theor

Likelihood

Bayesian Statistics Inference Nuisance params Model comparison

мсмс

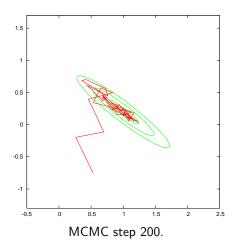
Simple steps

Stopping Adaptive step Step size Results

Nested Sampling

Drawing points Estimating volumes Algorithm Example

Let trial distribution be a simple Gaussian.



Probability Theor

Likelihood

Bayesian Statistics Inference Nuisance params Model comparison

мсмс

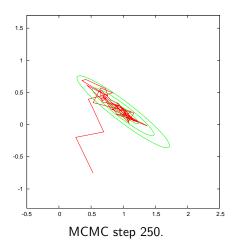
Simple steps

Adaptive step Step size Results

Nested Sampling

Drawing points Estimating volumes Algorithm Example

Let trial distribution be a simple Gaussian.



Probability Theory

Likelihood

Bayesian Statistics Inference Nuisance params Model comparison

мсмс

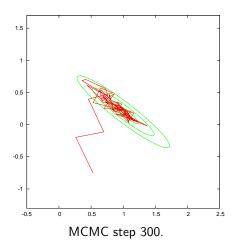
Simple steps

Adaptive step Step size Results

Nested Sampling

Drawing points Estimating volumes Algorithm Example

Let trial distribution be a simple Gaussian.



Probability Theory

Likelihood

Bayesian Statistics Inference Nuisance params Model comparison

мсмс

Simple steps

Stopping Adaptive step Step size Results

Nested Sampling

Drawing points Estimating volumes Algorithm Example

When to stop?

want:

- ▶ to sample *L* well
- to get results that are independent of starting point

solution:

- run multiple chains
- keep going until statistical properties of chains are equivalent
- throw away first half of each chain to eliminate "memory" of starting point

Probability Theory

Likelihood

Bayesian Statistics

Inference Nuisance params Model comparison

мсмс

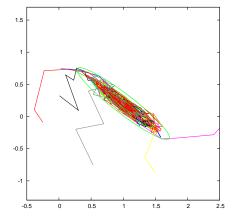
Simple steps

Stopping

Adaptive step Step size Results

Nested Sampling

Multiple chains



MCMC, 10 chains, simple Gaussian steps.

Probability Theory

Likelihood

Bayesian Statistics

Inference Nuisance params Model comparison

MCMC

Simple steps Stopping

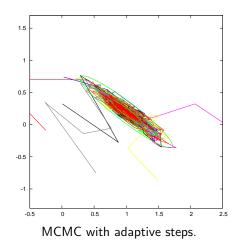
Adaptive step Step size Results

Nested Sampling

Drawing points Estimating volumes Algorithm Example

Adaptive steps

Q) Can we pick trial distribution to make MCMC more efficient? A) Use covariance matrix of points so far.



Probability Theory

Likelihood

Bayesian Statistics

Inference Nuisance params Model comparison

мсмс

Simple steps Stopping

Adaptive steps

Step size Results

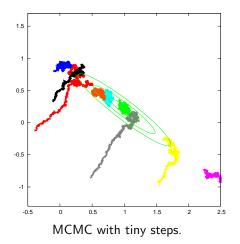
Nested Sampling

Drawing points Estimating volumes Algorithm Example

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへで

Step size

How big to make the steps?



Probability Theory

Likelihood

Bayesian Statistics Inference

Nuisance params Model comparison

MCMC

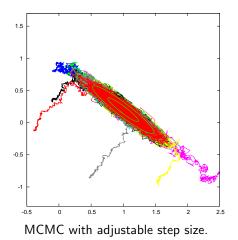
Simple steps Stopping Adaptive steps Step size Results

Nested Sampling

Drawing points Estimating volumes Algorithm Example

Step size

How big to make the steps?



Probability Theory

Likelihood

Bayesian Statistics Inference

Nuisance params Model comparison

мсмо

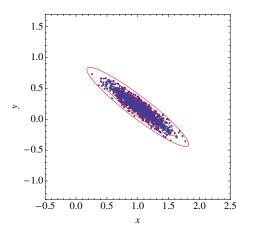
Simple steps Stopping Adaptive steps Step size Results

Nested Sampling

Drawing points Estimating volumes Algorithm Example

MCMC results

joint posterior, p(x, y): just plot all the sampled points



Probability Theory

Likelihood

Bayesian Statistics

nference Nuisance params Nodel comparison

мсмс

Simple steps Stopping Adaptive steps Step size

Results

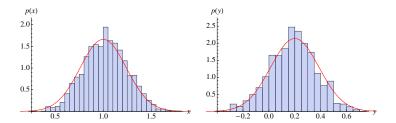
Nested Sampling

Drawing points Estimating volumes Algorithm Example

MCMC results

marginalized posterior, $p(\boldsymbol{x}):$ just plot a histogram of the $\boldsymbol{x}\text{-values}$ of all the sampled points

likewise for p(y)



Probability Theory

Likelihood

Bayesian Statistics

Inference Nuisance params Model comparison

мсмо

Simple steps Stopping Adaptive steps Step size

Results

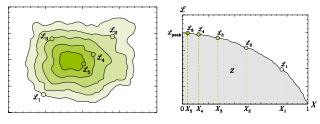
Nested Sampling

Drawing points Estimating volumes Algorithm Example

Nested sampling

introduced by Skilling (2004, 2006)

- peel away layers of constant likelihood one by one
- estimate "volume" of each layer statistically
- combine $(\mathcal{L}_i, \mathcal{V}_i)$ values to estimate the Bayesian evidence
- get a sample of points as a by-product



(courtesy R. Fadely)

variants: Shaw et al. (2007), Feroz & Hobson (2008), Brewer et al. (2009), Betancourt (2010); statistical uncertainties: CRK (2011)

Probability Theory

Likelihood

Bayesian Statistics

Inference Nuisance params Model comparison

мсмс

Simple steps Stopping Adaptive steps Step size Results

Nested Sampling

given likelihood $\mathcal{L}(q)$ and prior $\pi(q)$, write evidence as

$$Z = \int \mathcal{L}(q) \ \pi(q) \ dq$$

define fractional volume with likelihood higher than L

$$X(L) = \int_{\mathcal{L}(q) > L} \pi(q) \, dq$$

in principle, can invert to find L(X), then write

$$Z = \int_0^1 L(X) \ dX$$

discretize: if we can find a set of points (L_i, X_i) then we can write

$$Z = \sum_{i=1}^{N_{\text{nest}}} L_i (X_{i-1} - X_i)$$

Probability Theory

Likelihood

Bayesian Statistics

nference Nuisance params Nodel comparison

MCMC

Simple steps Stopping Adaptive steps Step size Results

Nested Sampling

Drawing points Estimating volumes Algorithm Example

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

how to get the points?

 L_i is "easy"

• draw uniformly (from prior) in region with $\mathcal{L} > L$

 X_i is harder

- in principle, requires integration
- proceed statistically...

Probability Theor

Likelihood

Bayesian Statistics

Inference Nuisance params Model comparison

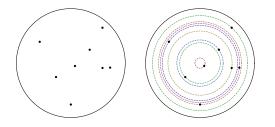
MCMC

Simple steps Stopping Adaptive steps Step size Results

Nested Sampling

Drawing points Estimating volumes Algorithm Example

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへで



▶ consider M points drawn uniformly from region with $\mathcal{L} > L$

• draw likelihood contours through them, let enclosed volumes be $V_1 > V_2 > \ldots > V_M$ — these are random variables

• write
$$V_1 = V_0 t_1$$
 where $t_1 \in (0, 1)$

► then t₁ is the largest of M random variables drawn uniformly between 0 and 1 — characterized by probability distribution

$$p(t) = Mt^{M-1} \quad \Rightarrow \quad \langle t_1 \rangle = \frac{M}{(M+1)}$$

Probability Theory

Likelihood

Bayesian Statistics

Inference Nuisance params Model comparison

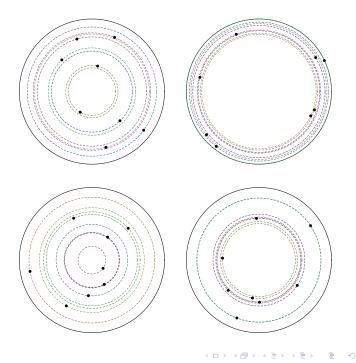
мсмс

Simple steps Stopping Adaptive steps Step size Results

Nested Sampling

Drawing points Estimating volumes Algorithm Example

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへ⊙



Likelihood

Bayesian Statistics

Inference Nuisance params Model comparison

мсмс

Simple steps Stopping Adaptive steps Step size Results

Nested Sampling

Algorithm

begin with M "live" points drawn uniformly from full prior; let their likelihoods be \mathcal{L}_{μ} $(\mu=1,\ldots,M)$

at step k:

• extract live point with lowest \mathcal{L} , call it k-th sampled point:

$$L_k = \min_{\mu} (\mathcal{L}_{\mu})$$

estimate the associated volume as

$$X_k = X_{k-1}t_k$$

where t_k is a random number drawn from $p(t) = Mt^{M-1}$

▶ replace extracted live point with a new point drawn from the priors but restricted to the region L(q) ≥ L_k

iterate for $N_{\rm nest}$ steps

Probability Theory

Likelihood

Bayesian Statistics

Inference Nuisance params Model comparison

мсмс

Simple steps Stopping Adaptive steps Step size Results

Nested Sampling



Likelihood

Bayesian Statistics

Inference Nuisance params Model comparison

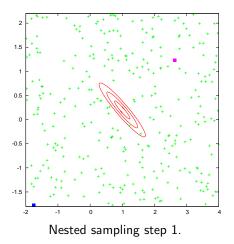
MCMC

Simple steps Stopping Adaptive steps Step size Results

Nested Sampling

Drawing points Estimating volumes Algorithm Example

(ロ)、(型)、(E)、(E)、 E) の(の)



Likelihood

Bayesian Statistics

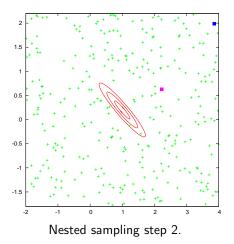
Inference Nuisance params Model comparison

мсмо

Simple steps Stopping Adaptive steps Step size Results

Nested Sampling

Drawing points Estimating volumes Algorithm Example



Likelihood

Bayesian Statistics

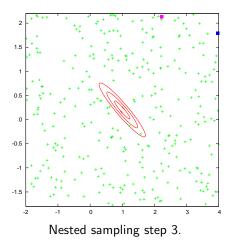
Inference Nuisance params Model comparison

MCMC

Simple steps Stopping Adaptive steps Step size Results

Nested Sampling

Drawing points Estimating volumes Algorithm Example



Likelihood

Bayesian Statistics

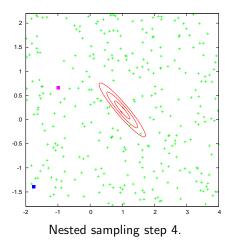
Inference Nuisance params Model comparison

MCMC

Simple steps Stopping Adaptive steps Step size Results

Nested Sampling

Drawing points Estimating volumes Algorithm Example



Likelihood

Bayesian Statistics

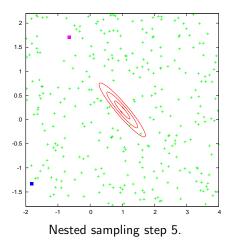
Inference Nuisance params Model comparison

мсмо

Simple steps Stopping Adaptive steps Step size Results

Nested Sampling

Drawing points Estimating volumes Algorithm Example



Likelihood

Bayesian Statistics

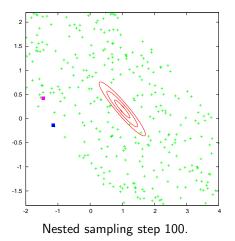
Inference Nuisance params Model comparison

MCMC

Simple steps Stopping Adaptive steps Step size Results

Nested Sampling

Drawing points Estimating volumes Algorithm Example



Likelihood

Bayesian Statistics

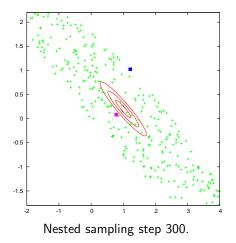
Inference Nuisance params Model comparison

MCMC

Simple steps Stopping Adaptive steps Step size Results

Nested Sampling

Drawing points Estimating volumes Algorithm Example



Likelihood

Bayesian Statistics

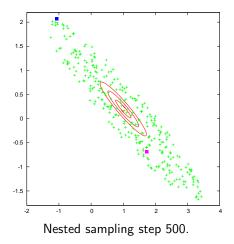
Inference Nuisance params Model comparison

MCMC

Simple steps Stopping Adaptive steps Step size Results

Nested Sampling

Drawing points Estimating volumes Algorithm Example



Likelihood

Bayesian Statistics

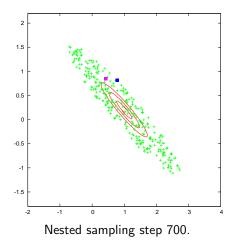
Inference Nuisance params Model comparison

MCMC

Simple steps Stopping Adaptive steps Step size Results

Nested Sampling

Drawing points Estimating volumes Algorithm Example



Likelihood

Bayesian Statistics

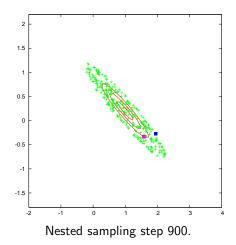
Inference Nuisance params Model comparison

MCMC

Simple steps Stopping Adaptive steps Step size Results

Nested Sampling

Drawing points Estimating volumes Algorithm Example



Likelihood

Bayesian Statistics

Inference Nuisance params Model comparison

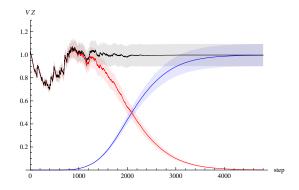
мсмс

Simple steps Stopping Adaptive steps Step size Results

Nested Sampling

Drawing points Estimating volumes Algorithm Example

development of evidence: contributions from live points, sampled points, and total



Probability Theor

Likelihood

Bayesian Statistics

Inference Nuisance params Model comparison

MCMC

Simple steps Stopping Adaptive steps Step size Results

Nested Sampling

Drawing points Estimating volumes Algorithm Example

(See CRK 2011 for statistical uncertainties.)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへで