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We present a detailed study of the Nernst effect Szx in �TMTSF�2PF6 as a function of temperature, magnetic
field magnitude, direction, and pressure. As previously reported there is a large resonantlike structure as the
magnetic field is rotated through crystallographic directions, the Lebed magic angles. These Nernst effect
resonances strongly suggest that the transport of the system is effectively “coherent” only in crystallographic
planes along or close to the applied field direction. We also present analytical and numerical calculations of the
conductivity and thermoelectric tensors for �TMTSF�2PF6, based on a Boltzmann transport model within the
semiclassical approximation. The Boltzmann transport calculation fails to describe the experimental data. We
suggest that the answer may lie in the field induced decoupling of the strongly correlated chains.
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I. INTRODUCTION

�TMTSF�2PF6 is a quasi-one-dimensional �Q1D� elec-
tronic system, which displays various ground states ranging
from triplet superconductor1–3 to spin-density wave �SDW�
insulator, depending on pressure, temperature, and magnetic
field �for a review, please see Ref. 4�. �TMTSF�2PF6 consists
of platelike TMTSF molecules which stack with a strong
wave function overlap in chains. The intrachain bandwidth is
�1 eV while the interchain couplings give anisotropic band-
widths of 0.1 eV and 0.003 eV in the approximately or-
thogonal directions. In the “metallic” phase under moderate
magnetic field, a fascinating phenomenon, the so-called
Lebed magic angle effect �MAE� was discovered5–7 after
Lebed’s initial prediction.8,9 The manifestations of these
MAEs were sharp resistance dips when the magnetic field
was aligned at interchain directions in real space �lattice
vectors10�. In reciprocal space a field along the magic angles
induces electron motion along commensurate k space
orbits.11 Despite many theoretical efforts to describe the
magic angle effects,10–17 there is as yet no satisfactory expla-
nation. Most of the theories focus on the semiclassical mo-
tions of electrons on the open Fermi surface derived from the
single particle band structure.

Recently, a giant Nernst effect was determined in
�TMTSF�2PF6 under pressure.18 As the magnetic field was
rotated toward a magic angle, the Nernst signal increased
then decreased toward zero, changed sign at the magic angle,
and continued in an inverse manner. The result is a sharp
resonantlike structure. The magnitude of the Nernst signal at
1 K is at least three orders of magnitude larger than what we
expected from simple �Drude� estimations. The sign change
of the Nernst effect at the magic angles strongly suggests that
the transport involved in the Nernst effect is effectively two-
dimensional �2D� at these commensurate angles. Both the
sign change at the magic angles and the large magnitude of
the signal are not yet explained, but the effect appears ge-
neric for these materials. The giant resonant Nernst voltage
has been observed in the sister compound �TMTSF�2ClO4

�Ref. 19�. Present phenomenological models for the sign

change involve field induced interplane decoupling.10 Al-
though there is some experimental evidence for this decou-
pling, there are not yet theoretical models which rigorously
demonstrate this phenomenon.

Giant Nernst signals have also been seen in high transi-
tion temperature superconducting �HTc� cuprates, where a
model invoking superconducting vortices and 2D supercon-
ducting phase coherence has been successful.20–22 A similar
model has been proposed for �TMTSF�2PF6.17 However, to
apply this idea in �TMTSF�2PF6 is quite controversial. On
one hand it naturally explains the large Nernst signal with
undetectable thermopower signal, predicts a particular sign
of the Nernst effect confirmed by experiments, and qualita-
tively explains some aspects of experiments. On the other
hand, it predicts a large superconducting fluctuation region in
the phase diagram, which is absent in other measurements.
Most of the superconducting properties in �TMTSF�2PF6

have been understood within a mean field BCS picture. We
will explore the possibility of this vortex Nernst effect with
more experimental detail in a subsequent paper.

What sorely hampers progress in understanding these un-
usual magic angle phenomena are the lack of measurements
other than charge transport. The field induced SDW
�FISDW� and MAE have been observed primarily in the
charge channel by transport measurements. The FISDW has
been more thoroughly explored with magnetization, magne-
tocaloric effect, and spin relaxation studies. Magnetic torque
measurements on �TMTSF�2ClO4 suggest there is a thermo-
dynamic component to the MAE.6 While a thermodynamic
probe is an obvious choice for establishing the presence of
unknown phases or fluctuations in �TMTSF�2PF6, the high
pressure environment makes a measurement of specific heat
or dc magnetic susceptibility impractical. Recently, the 77Se
NMR spin-lattice relaxation rate measurements23 at different
magnetic field orientation show no evidence for either a spin
gap or a single particle gap. Furthermore, there is no evi-
dence for an enhancement of the FISDW transition tempera-
ture. This strongly suggests that neither FISDW ordering nor
fluctuations are likely to be responsible for the MAE. The
dramatic contrast between the charge channel and the spin
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channel at magic angles suggests that spin and charge de-
grees of freedom may be decoupled.24,25 The thermodynamic
and suggested coherent-incoherent transitions would there-
fore be the result of interaction and correlation effects due to
subtle changes in the electronic wave functions and density
wave susceptibilities.

Before speculating further on exotic mechanisms for the
giant Nernst resonances and other MAEs in transport it is
necessary to see what conventional transport theory will
yield. Although Boltzmann transport calculations as a func-
tion of magnetic field magnitude and direction have been
performed for resistance11 there has been no such study for
the thermoelectric transport coefficients. Such calculations
are one of the main contributions of this paper.

We divide our presentation into two sections. The first
section focuses on the Nernst experiments. We present a de-
tailed study of the Nernst effect Szx in �TMTSF�2PF6 at vari-
ous pressures, magnetic fields, and temperatures. The second
part presents both numerical and analytic calculations of
Boltzmann transport in the relaxation time approximation
with realistic band parameters. We then compare the calcu-
lations with our experiment data.

II. NERNST MEASUREMENT

A. Method

Figure 1 shows the experimental setup for the Nernst ef-
fect Szx measurement with the temperature gradient along the
a axis and the electric field measured along c axis. Three
pairs of Au wires were attached to the opposite ab faces of
the sample by silver paint for both resistance measurements
�the end pairs� and the Nernst measurements �the middle
pair�. The Au wires were attached to the alloy wires �phos-
pher bronze� and fed through the pressure cell base. Here we
used low thermal conductivity alloy wires instead of Cu
wires to minimize the possible transverse temperature gradi-
ents. A miniature heater was placed on top of the sample to

establish a small temperature gradient along the a axis. Two
thin film RuO thermometers were used to measure the tem-
perature difference. The thermoelectric voltage is measured
by a Keithley 182 Nanovoltmeter. The heater was turned on
and off for a few cycles for signal averaging.26 A linear-fit-
extrapolation method was used to accommodate the slow
drift of the baseline signal.27 The resistance was measured by
a conventional four-probe low frequency lock-in technique.
The magnetoresistance Rzz and Nernst signals Szx were mea-
sured simultaneously.

Figure 2 shows a typical angular dependence of the
Nernst signal Szx in �TMTSF�2PF6, obtained at 1 K, 6 T, and
13 kbar. The magnetic field was rotated from −40° to 50°
with respect to the c* axis �see Ref. 18 for definitions of c*,
c�, etc.�. The maximum Nernst signal is about 100 �V/K,
found at approximately 3°–4° off c� ��c�=7° �. The Nernst
coefficient is of the order of 10 �V/K T. As far as we know,
this value is much larger than the Nernst effect observed in
any other metal at low temperature. The angular dependence
of the Nernst signal agrees well with our previous thermo-
electric measurement in a different geometry.18 To study the
temperature, field, and pressure dependence of the giant
Nernst effect, we fixed the magnetic field orientation at 3°
off a magic angle�c� or −1L�. First, let us discuss the sign of
the Nernst effect in �TMTSF�2PF6. This is very important for
the vortex Nernst model.

B. The sign of the Nernst effect

In the vortex liquid phase of type II superconductors vor-
tices flow down the temperature gradient, v � �−�T� and gen-
erate an electric field E=B�v transverse to the temperature
gradient −�T according to the Josephson relation.28,29 There-
fore, the sign of the vortex Nernst effect is fixed by �T�B.
In general, the Nernst effect of an electronic system can have
either sign depending on details of the band structure. To
determine the sign of the Nernst signal, we noted the orien-

FIG. 1. �Color online� The measurement setup of the Nernst
effect Szx: Three pairs of Au wires were attached to the sample
along the a axis on the opposite sides of the ab faces of the sample.
Two RuO thin film resistance thermometers were placed next to
both ends of the sample to measure the temperature gradient gen-
erated by a miniature heater on the top. The middle pair of leads
was used for Nernst voltage �Vz pickup. The other two pairs of
leads were used for four-probe interplane �c axis� resistance mea-
surements. The magnetoresistance Rzz, was measured simulta-
neously with the Nernst effect Szx.

FIG. 2. The angular dependence of the Nernst signal Szx and c
axis resistance Rzz were measured simultaneous at 1 K, 6 T, and
13 kbar. The thin line data are Rzz���. The open circles are the
Nernst data Szx���. The solid line is a guide to the eyes. The Nernst
resonances are well aligned with the magic angles marked by the
resistance dips. Here ±1 correspond to interchain directions c�±b�.
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tation of the sample and leads, and placed an alignment mark
on the base �feedthrough� of the pressure cell and on the cell
body. We assume the alignment mark does not change much
on pressurization. To get the Nernst sign correct we need to
know the orientation to better than 90°. We see the magic
angles where we expect them to be within 15°. We observed
no orientation variation when the pressure was increased in
the same pressure cell. Our measurements show that the sign
of the Nernst effect is consistent with the vortex Nernst
model �but certainly does not prove it�.

C. Temperature dependence

Figure 3 shows the temperature dependence of the Nernst
effect Szx at c� at different field values: 4, 6, and 7.5 T for
8 kbar pressure. The Nernst signals rise gradually to a maxi-
mum around 1 K as the temperature decreases, then fall off
roughly exponentially at lower temperatures and are unmea-
surable below �200 mK. Clearly, the Nernst signal is non-
linear with the magnetic field below 2 K. The temperature
dependence of the Nernst signal at 7.5 T agrees with the
previous Nernst data from the thermopower measurement.18

At high magnetic fields, �TMTSF�2PF6 enters the FISDW
insulting phase at a critical temperature Tc�H� indicated by
the sharp rise of resistance Rzz measured simultaneously. In
the “metallic” phase, the Nernst effect at c� and ±1 Lebed
angles have similar temperature dependence, except the mag-
nitude is much larger for c�. However, the presence of the
FISDW phase seems to suppress the Nernst signal at c�. As
shown in Fig. 3 for 7.5 T data, a sudden decrease of the
Nernst voltage happens at the onset of the FISDW transition.

Interestingly, the presence of the FISDW phase affects the
Nernst signal at the −1 Lebed angle differently. As shown in
Fig. 4, at 8 kbar pressure the FISDW onsets �from Rzz� co-
incide with the onsets of a large increase of Nernst voltage at
the −1 Lebed angle at various magnetic fields. At still lower

temperature the voltage at the −1 Lebed angle reaches a peak
around 300�400 mK then decreases quickly. The peak
value is as large as �220 �V/K at 7.5 T. The difference is
further confirmed by the angular dependence of the Nernst
effect at base temperature �150 mK�, where there are large
Nernst resonances at the ±1 Lebed angles while there is none
at c�. This behavior is consistent with our previous
measurements.18 The effect of FISDW on −1 Lebed angles is
further confirmed by measurements at higher pressures,
where the FISDW transition temperatures Tc�H� vary accord-
ingly. For example, at 13 kbar the FISDW transition tem-
perature at 7.5 T is suppressed down to �350 mK, the en-
hancement of the Nernst effect at the −1 Lebed angle follows
the FISDW transition accordingly as shown in the inset of
Fig. 4.

The suppression of the Nernst signal at c� by the FISDW
is not understood at this moment. It is probably due to the
competition between the FISDW phase and metallic phase.
This difference seems to suggest the magic angle c� is dif-
ferent from the −1 Lebed magic angle in a subtle way. In this
paper, we limit our discussion within the “metallic” state
where the MAE is pronounced. We note that a full under-
standing of the MAE should cover the FISDW phase, where
the MAE is more complicated than in the metallic phase.

D. Field dependence

As seen in the temperature dependence of Szx at different
magnetic fields, the Nernst effect in �TMTSF�2PF6 is very
nonlinear with the magnetic field. In the upper panel of Fig.
5, we show the simultaneous measurements of the magne-
toresistance Rzz and the Nernst effect Szx vs the magnetic
field at 1.6 K, 8 kbar, and 3° off c�. It is clear that the Nernst

FIG. 3. Simultaneous measured temperature dependences of the
c axis resistance Rzz �thin lines� and the Nernst signal Szx �filled
symbols� at 8 kbar for 3° off c�. The Nernst signals rise to a maxi-
mum around 1 K, then fall exponentially and are unmeasurable
below �200 mK. The decrease of the Nernst signal is correlated
with the upturn of the resistance as T decreases. The upturn of Rzz

indicates the metal FISDW phase transition.

FIG. 4. Main panel: Temperature dependence of the Nernst sig-
nal Szx measured at 3° away from −1 Lebed angle at 8 kbar. The
magnetic fields are: 7.5, 7.0, 6.5, and 6.0 T, respectively. The ar-
rows mark the FISDW transition temperature obtained from resis-
tance measurements Rzz�T� �not shown for clarity� at various fields.
Inset: Temperature dependence of the Nernst signal Szx and resis-
tance Rzz of the −1 Lebed angle at 13 kbar for 7.5 T magnetic field.
The dash line marks the FISDW transition ��350 mK�. An en-
hancement of Nernst voltage was found in the FISDW phase.
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signal has a superlinear field dependence. An obvious non-
linear effect is the large magnetoresistance of �TMTSF�2PF6.

In transport theory, the thermopower tensor SJ is the product
of the resistivity tensor �J and the thermoelectric tensor �J

SJ = �J · �J . �1�

Therefore, Szx=�zx�xx+�zy�yx+�zz�zx��zz�zx. Here we
ignore the first two terms since the Hall effects are negligibly
small in the metallic phase for �TMTSF�2PF6. To obtain �zx,
we took the ratio of the Nernst signal Szx and the resistance
Rzz at the same field to obtain the field dependence of �zx
� �Szx /Rzz� according to Eq. �1�. The prefactor depends on
the sample geometry. The result is shown in the lower panel
of Fig. 5. Clearly �zx is approximately linear with the mag-
netic field below 5 T. Therefore, the nonlinearity of the
Nernst signal Szx in �TMTSF�2PF6 mainly comes from the
large magnetoresistance. The linear field dependence for
field along c� and −1 Lebed angle suggests that �zx is prob-
ably a more fundamental quantity in the thermoelectric effect
of �TMTSF�2PF6.

Figure 6 shows the field dependence of Szx and Rzz for the
field along 3° off the −1 Lebed angle at 375 mK. We can see
that when the �TMTSF�2PF6 goes into the FISDW, the resis-
tance rises up sharply around 5.5 T due to the presence of

the FISDW gap. The Nernst signal also shows a sharp upturn
around 5.5 T and rises up dramatically. This agrees with the
observation of the enhancement of the Nernst signal at a −1
Lebed angle in the temperature dependence �Fig. 4�.

E. The effect of pressure

The ground state properties of the Bechgaard salts are
strongly affected by hydrostatic pressure. The temperature,
pressure, and magnetic field �T-P-H� three dimensional �3D�
phase diagram �Fig. 1 in Ref. 30� summarizes the effects of
pressure on various phase transitions. For example, the
threshold field of the FISDW phase progressively increases
as the pressure gets higher. The superconducting transition
temperature Tc is also slowly suppressed by increasing pres-
sure. Figure 7 shows the zero field temperature dependence
of resistance Rzz at 8 kbar, 10 kbar, and 13 kbar, respec-
tively. The superconducting transition temperature decreases

FIG. 5. Upper panel: Magnetic field dependence of Szx and Rzz

measured simultaneously at 8 kbar, 1.6 K for c�. Clearly Szx is non-
linear with the magnetic field just as observed in the previous mea-
surement �Ref. 18�. Lower panel: Ratio of Szx and Rzz derived from
the upper panel. As discussed in the text, Szx /Rzz��zx. The dash
line is a guide to the eyes. It is clear that at low field �zx is linear
with the field.

FIG. 6. Magnetic field dependence of Szx and Rzz measured si-
multaneously at 8 kbar and 375 mK for the field at 3° away from
−1 Lebed angle. The upturn of the Rzz around 5.5 T defines the
threshold field of the FISDW transition. Szx is highly nonlinear and
enhanced greatly in the FISDW phase.

FIG. 7. Zero field temperature dependence of Rzz at 8, 10, and
13 kbar. The Tc0’s are 1.02 K, 0.87 K, and 0.77 K, obtained from
the Rzz�T�, respectively.
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slowly with increasing pressure. Using the onset definition
�90% of the normal state value�, we found that the supercon-
ducting transition temperatures Tc0 are 1.02 K, 0.87 K, and
0.77 K, respectively.

In Fig. 8 we show the comparison of the temperature
dependence of the normalized Nernst signal at 3° off c� be-
tween 8 kbar, 10 kbar, and 13 kbar. Qualitatively, the tem-
perature dependence of the Nernst signal is pressure insensi-
tive.

The angular dependence doesn’t change significantly ei-
ther as we vary the pressure. Figure 9 shows the angular
dependence of Szx and Rzz at 8, 10, and 13 kbar, respectively.
Note that the temperature and magnetic fields of these data
are not identical. However, qualitatively they are all the
same. Note that all data shown here are in the metallic phase.

III. BOLTZMANN CALCULATION OF THE NERNST
EFFECT

To gain some elementary intuition about transport pro-
cesses it is often instructive to look first at a generalized
Drude approximation, by which we mean a classical gas of
charged particles in the lowest order response to an applied
set of driving fields.

A. Drude transport

In Fig. 10 we show a cartoon of the particle motion of
such a charged gas. In a Drude model forces accelerate par-
ticles which then lose momentum in collisions at a rate 1 /�.
The basic equation of motion is therefore mv /�=F, the
charge per particle is q, the particle density is n, the current
density is simply charge density times velocity j=nqv and
j=	 ·E. In Fig. 10�a�, F is qE and v= �q� /m�E, j
= �nq2� /m� ·E, the conductivity 	 is given by 	=nq2� /m. In
the presence of the magnetic field there is a Lorentz force
which deflects particles in the y direction building up charges
on the upper and lower boundaries. The charges continue
accumulating until the electric field they generate exactly

cancels the Lorentz force, Ey =vxBz. In the steady state the
Hall field Ey = jx /nq ·Bz completely compensates the effect of
the magnetic field, the carriers only drift in the x direction
and there is no magnetoresistance. In Fig. 10�b� the drive is
a temperature gradient. In this simple model the gas is ideal
and we use the ideal gas law, P=nkBT. A temperature gradi-
ent translates to a pressure gradient �P=nkB�T, or a force
per particle of F=�P /n. The charged particles will flow in
the x direction charging the boundaries and creating an op-
posing field Ex. The current and charging stop when qEx
=Fx or Ex= �kB /q��xT. This thermoelectric voltage is the
Seebeck effect with coefficient S1=kB /q. This was a big fail-
ure of the Drude model. It overestimates the thermopower by
several orders of magnitude. The reason is quite evident to-
day. We have a degenerate electron gas �DEG� rather than an
ideal classical gas. The effective number of degrees of free-
dom, or particles that can transport heat, is reduced by
�kBT /EF so the S1DEG��kBT /EF��kB /q�. In this picture the
electric force cancels the pressure and the particles have no
velocity, v�B=0 and the Nernst voltage is zero. For the
simplest conductors we therefore expect the thermopower to
be sizeable and the Nernst effect negligible. But it is worth
noting that effectively the same argument would suggest that
the magnetoresistance is negligible.

In Figs. 10�c� and 10�d� we consider the case of two op-
positely charged carriers, which are otherwise identical. With
an electric field along x the two carriers move at vx
= �q� /m�Ex in opposite directions both contributing to the
electrical current and conductivity which remains 	0
=nq2� /m. Now however, in the presence of Bz both are de-
flected in the same direction, there is no charge accumulated

FIG. 8. Temperature dependence of the Nernst signal Szx at 8,
10, and 13 kbar at 7.5 T. Qualitatively no change is observed for
various pressures.

FIG. 9. �Color online� Angle dependence of Szx �“�”� and Rzz

�lines� at �a� 8 kbar, 2.1 K, and 7.5 T; �b� 10 kbar, 660 mK, and
7.5 T; �c� 13 kbar, 1 K, and 6 T. Qualitatively, no change is
observed.
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on the boundaries, there is no Hall voltage, and velocities
persist in both directions, vy =vx�qBz� /m�, vx= �q� /m�Ex

−vy�qBz /m��, with the solution, vx= �q�m�Ex / �1
+ �qBz� /m�2�, 	=	0 / �1+ �
c��2�, where 
c= �q�Bz /m. There
is now magnetoresistance, �� /�= �
c��2. In Fig. 10�d� the
drive is a temperature gradient again producing a pressure
gradient. Both types of particles move down the pressure
gradient with velocity, vx=kB�xT� /m there is no charge ac-
cumulation, and no field generated along x so the Seebeck
coefficient is zero. In the presence of a magnetic field, the
particles with the same velocity but opposite sign are sepa-
rated, charges accumulate on the upper and lower boundaries
until the electric field compensates the Lorentz force, Ey
=vxBz=kB�xT�Bz /m. The result is a Nernst voltage with co-
efficient Syx=kB�Bz /m= �kB / �q����q�Bz� /m�=S1
c�. With the
degenerate electron gas correction we should then expect
SxyDEG��kB / �q���kBT /EF��
c��,

	 Hall MR Seebeck Nernst

One carrier
nq2�

m

1

nq 0
kB

q

kBT

EF
0

Ambipolar
nq2�

m 0 �
c��2 0
kB

�q�
kBT

EF

c�

The extension of these results to field orientation and dif-
ferent ratios of the densities of the oppositely charged par-
ticles is straightforward. With

S1 =
kB

�q�
kBT

EF
, a =

n+ − n−

n+ + n− ,

f�a� = a
1 + �
c��2

1 + a2�
c��2 , g�a� =
1 − a2

1 + a2�
c��2 ,

we find S�a�=S1f�a�, Sxy�a�=S1�
c��g�a�, RH=1/n�q�f�a�,
�� /�= �
c��2g�a�. The Hall and Nernst voltages vary as
B�E and B��T, respectively. f�a� and g�a� are plotted in
Fig. 11. Putting in realistic parameters, one will find that the
Nernst effect in the Drude model is of the order of 10 nV/K.
The Drude picture also predicts that the Nernst effect has a
simple sin � dependence of magnetic field orientation and
linear dependence of magnetic field strength B and tempera-
ture T.

B. Boltzmann transport and Q1D Fermi surface

Simple Drude calculations are not capable of handling the
highly anisotropic nature of the Bechgaard salts nor the

FIG. 10. �Color online� Generalized Drude
model schematic. Magnetic field perpendicular to
the plane. �a� and �b� show the electric field E
drive, �c� and �d� show temperature gradient �T
drive, �a� and �c� show a single type of charge
carrier, and �b� and �d� show two oppositely
charged carriers �ambipolar�.

FIG. 11. �Color online� The Drude picture in general: Here a
= �n+−n−� / �n++n−� is the net charge density of mobile charge car-
riers. The thermopower S and the Hall effect RH scale with f�a�,
while the Nernst effect Sxy and the magnetoresistance �� /� scale
with g�a�.
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angular orientation of the field relative to the lattice vectors.
The simplest treatment which includes the bandstructure
comes from a steady state Boltzmann equation. It has previ-
ously been shown that Boltzmann transport, appropriately
modified to follow electron trajectories over many Brillouin
zones �or equivalently many Umklapp scatterings� can give a
magic angle effect in Rzz.

11,12 Moreover, this model is in
qualitative agreement with the measurements in the
�TMTSF�2ClO4 salt. Although the Boltzmann transport �the
Osada model for �TMTSF�2X� have not been successful for
�TMTSF�2PF6, they are still the only reasonable single par-
ticle treatment available. We therefore performed both nu-
merical and analytic calculations using a Boltzmann Trans-
port formulation based on the tight binding approximation
band structure within the single relaxation time approxima-
tion. For simplicity, the triclinic crystal structure of
�TMTSF�2X is taken as orthorhombic.

� = − 2ta cos kxa − 2tb cos kyb − 2tc cos kzc . �2�

For �TMTSF�2X, ta� tb� tc. Often people linearize the kx

dispersion for simplicity. One would obtain the so-called lin-
earized dispersion

� − � f = ± 
v f�kx � kf� − 2tb cos�kyb� − 2tc cos�kzc� . �3�

In this approximation, the Fermi velocity v f �or the den-
sity of states on Fermi surface Nf�� f�=1/
v f� is a constant
for a given energy. Many of the angular magnetoresistance
oscillations �AMRO�, e.g., the Danner-Kang-Chaikin oscilla-
tion �ac rotation�,31 the third angle effect �ab rotation�,32 and
the combination of them33 can be understood within this ap-
proximation. There is excellent agreement between experi-
ment and theory, especially for �TMTSF�2ClO4.34 However,
for a linearized dispersion relation the Hall effect is zero
�	xy =	xz=0�. It is not surprising the Nernst effect is also
zero �Sxy =Sxz=0� in this approximation. In order to calculate
the Nernst effect, we have to use the full dispersion or a
nonlinear approximation in either numerical computation or
in an analytic calculation.

In general transport theory, we consider both an electric
current J and a thermal current Jq in response to an electric
field E, a magnetic field B, and a temperature gradient
�−�T�

J = 	J · E + �J · �− �T� ,

Jq = T�J� · E + �J · �− �T� . �4�

Here 	J is the electric conductivity tensor, �J and �J� are the
thermoelectric tensors, and �J is the thermal conductivity
tensor. Here �ij�H�=� ji� �−H� according to the Onsager
relation.35,36 For a degenerate electron gas, these coefficients
can be obtained by applying the relaxation time
approximation37

	J =
e2�

4�3	
�=�

dSk


v
v
v� ,

�J = � 1

eT

�2

3
�kBT�2�	J���

��
�

�=�

. �5�

Here we assume an energy and momentum independent
relaxation time �. The velocity average is defined as

v�k�t���
�−�

0 dt /�et/�v�k�t��, where k�t� is the semiclassical
motion of electrons on a Fermi surface in the presence of a
magnetic field. Equation �5� are the starting point of our
calculation. From the general transport equations �Eq. �4��,
by setting J=0 as the boundary condition in thermoelectric
measurements, one would find Eq. �1�. The Nernst signal Szx
is an off-diagonal element of the thermoelectric power tensor

SJ.
Now let’s focus on the Q1D system �TMTSF�2X. The

Fermi surface of Q1D system consists of two slightly warped
sheets. In order to evaluate the Fermi surface averaging ve-
locity 
v� we have to calculate the motion of electrons on a
Fermi surface in the presence of the magnetic field. Here the
a axis �kx� is the best conductivity direction, so the Fermi
surface is approximately normal to the kx axis. Therefore, kx
is a function of ky, kz, and � from the dispersion relation �Eq.
�2��, i.e.,

kx = kx�ky,kz;�� . �6�

Therefore, kx is not an independent variable for the semi-
classical motion of electrons, given that the motion of the
election is confined to the Fermi surface in the presence of
the magnetic field B. The equations of motion can be re-
duced to

dky

dt
=

e



�vzBx − vxBz�,

dkz

dt
=

e



�vxBy − vyBx� . �7�

By solving these two equations of motion Eq. �7�, we can
evaluate v�t�=v�k�t��. This is what we need for the conduc-
tivity tensor 	J. From Eqs. �5�, the thermoelectric coefficient
tensor �J is proportional to the energy derivative of the con-
ductivity tensor 	J��� at the Fermi energy,

	ij =
e2�

4�3 	 	 dkydkz


�vx�
vi
v j� ,

�ij =
kB

2e�T

12�

�

��
	 	 dkydkz


�vx�
vi
v j� . �8�

In our analytic calculation, we derived an approximate
analytic form for 	J���, then obtained � by differentiation. On
the other hand, it is straightforward to evaluate both 	J and �J
via numerical methods. Numerically �J can be calculated by
taking the energy derivative of each term in the integral �Eq.
�8��.
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C. Numerical calculation

From Eq. �8� we can obtain

�9�

Note here �J�T if we assume � is T independence, which
is a good approximation at low temperature. It is straightfor-
ward to evaluate the first two terms. Here we have

�v

��
= 
 · MJ −1 ·

�k

��
. �10�

Here we define the inverse mass tensor MJ −1 as

�M−1�ij =
1




�vi

�kj
=

1


2

�2��k�
�ki�kj

. �11�

Here ky and kz are independent variables, so the energy
dependence of the first two terms only comes from kx, which
is a function of � �see Eq. �6��. Then, we will have

�

��
=

�kx

��

�

�kx
=

1


vx

�

�kx
. �12�

Therefore �� /����1/vx�=−�mxx
−1 /vx

3� and �vi /��
=�i,x�mxx

−1 /vx�. For the �c� term in Eq. �9�, we exchange the
differentiation and averaging �integral�, i.e., ��
v� /���
= 
�v /���. Setting the �a�, �b�, and �c� terms in Eq. �9� to-
gether, we obtain an expression for the thermoelectric coef-
ficient tensor �J,

�J = �J�+� + �J�−�, �13�

where �J�±� is defined as

�ij
�±� 


kB
2e�T

12�

	 	 dkydkz�±��−

mxx
−1

vx
3 vi
v j� +

mxx
−1

vx
2 �i,x
v j�

+
vi

vx
� �v j

��
��, kx � 0. �14�

Now we need to find ��v /����t�, which involves the mo-
tion of an electron in the magnetic field. ��v /����t� depends
on the value of the Fermi energy not only through kx, but
also through ky and kz, because ky and kz are also functions of
t when the electron is moving on the Fermi surface in the
magnetic field. These functions depend on energy � and the
“initial” condition �ky

0 ,kz
0�, i.e.,

ky�t� = ky�t;�,ky
0,kz

0� , kz�t� = kz�t;�,ky
0,kz

0� . �15�

FIG. 12. �Color online� Angular dependence of conductivity tensor 	J. Here B=8 T. The origin is the c axis, while 90° is the b axis and
30° is the +1 Lebed angle: c+b. The inset of 	zz shows a hump at the +1 Lebed angle. The open circles are the numerical calculations, and
the thin lines are the analytic results.
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We cannot derive the energy dependence of ky and kz
directly if we don’t know the solution of the equations of
motion. However, we can find the differential equations
which are satisfied by �ky /�� and �ky /��, from the equations
of motion of ky and kz Eq. �7�,

d

dt

�ky

��
=

�

��

dky

dt
=

e



� �vz

��
Bx −

�vx

��
Bz� ,

d

dt

�ky

��
=

�

��

dkz

dt
=

e



� �vx

��
By −

�vy

��
Bx� . �16�

From Eq. �6�, we will find

�kx�t�
��

=
1


vx�t�
�1 − 
vy�t�

�ky�t�
��

− 
vz�t�
�kz�t�

��
� . �17�

Combining Eq. �16� with Eq. �10�, we can obtain numeri-
cal solutions of ��v /����t�. Since ky, kz are independent of �
at t=0, the initial conditions for ��ky /����t� and ��kz /����t�
are ��ky /����0�= ��kz /����0�=0.

In summary, to calculate both 	J and �J, we numerically
solve two sets of equations of motions, Eqs. �7� and Eqs.
�16�. To treat the differential equations in Eqs. �7� and �16�,
we use a fourth order Runge-Kutta method.38 Then we nu-
merically integrate 
v� and 
�v /��� and evaluate both 	J and
�J by Fermi surface integrals. Here we use the band param-
eters �ta=0.25 eV, tb=0.024 eV, and tc=0.008 eV� from
tight binding approximations, realistic lattice parameters �a
=3.49 Å, b=7.7 Å, and c=13.264 Å� and a scattering time

�=4.26�10−12 sec from previous studies by Danner et al.31

Here we use B=8 T, and T=1 K, which are comparable with
experiment conditions. The combination of the parameters
produce 
c�=eB� /me=6 for an isotropic free electron gas.
We use a 20�20 grid on the Fermi surface in the calcula-
tions. Although the grid is a little rough, the results catch all
the main features. We also used a 40�40 grid for some
calculations and did not find a significant difference.

D. Analytic calculation

The basis of our analytic approximation scheme is finding
the proper correction to the linear dispersion approximation
Eq. �3�. We expanded vx to next order to include the effect of
nonlinearity of the dispersion, i.e., vx�v f +�v f. This ap-
proach is basically the semiclassical version of Lebed’s
quantum approach.39 It is straightforward to find v f
= �2taa /
�sin kfa0 with cos kfa=−� /2ta, and the first order
correction is

�v f

v f
=

cos kfa

sin2 kfa
� tb

ta
cos�kyb� +

tc

ta
cos�kzc�� + ¯ . �18�

Defining �
�cos kfa / sin2kfa��tb / ta� and �
�cos kfa /
sin2kfa��tc / ta�, then we have

vx � v f�1 − � cos�kyb� − � cos�kzc�� ,
�19�

vy =
2tbb



sin kyb , vy =

2tcc



sin kzc .

FIG. 13. �Color online� Resistivity tensor �J=	J−1.
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By substituting vx in the equations of motion Eqs. �7�, one
can obtain analytic expressions for ky�t� and kz�t� and evalu-
ate velocity averages 
v� for 	J��� by taking appropriate ap-
proximations. Then it is straightforward to obtain �J by dif-
ferentiation. Details of the analytic calculation are presented
in the Appendix. As shown in Figs. 12–15, our analytic cal-
culations reproduce the main features of the numerical cal-
culations. In some cases, the results from different methods
overlap very well. Therefore, we believe our calculations de-
scribe the main behavior of the Nernst signal in Boltzmann
transport within the tight binding approximation.

E. Results

Figure 12 shows the calculated angular dependence of the
conductivity tensor 	J. The graphs are arranged in the pattern
of the tensor elements 	ij in the matrix form. Here � is the
magnetic field orientation respect to the c axis. Therefore �
=90° corresponds to the magnetic field aligned with the b
axis. As shown in the inset graph of 	zz, there is a small
hump at the first Lebed angle: c+b, which is about 30° in
our approximation. This is one test that our calculations re-
produce the angular dependence of 	zz calculated by Osada
et al.40 By increasing the scattering time � or the magnetic
field strength, we can clearly resolve a peak at this angle. We
also confirmed other AMROs, e.g., ac rotation and reproduce
the Danner oscillations.31 However, as far as we know, there
is no calculation of the tensor �J in the literature for compari-
son. This was our motivation for performing the analytic

calculation to confirm our numerical results. Once we ob-
tained 	J and �J, we got the thermoelectric power tensor SJ

�Fig. 15� by taking the product of �J=	J−1 �Fig. 13� and �J
�Fig. 14�.

It is clear that the quality of the numerical calculation of 	J
is much better than that of �J. Most curves of 	J are very
smooth and only minor oscillations are observed. Most
curves of �J are smooth, except that �yz and �zy. �yz has some
spiky features for � close to c; while �zy has some spiky
features for � close to b. This is because the energy deriva-
tive of the velocities is very sensitive to the location on the
Fermi surface �ky ,kz�. Finite size grid integration could also
generate artificial spikes if the integrand oscillates a lot.

By varying the grid size and the integration cut-off limit,
these artificial features can be suppressed, but at the expense
of much more computation time. Since we are only inter-
ested in the general behaviors and magnitudes for a given set
of parameters, we will use these nonperfect calculation re-
sults to compare with experiments, while keeping in mind
that sharp features might be artificial. Also, our analytic re-
sults will help us to find most of the physical features.

The Nernst signal Szx corresponds to the experimental re-
sults discussed in the previous section. It is clear that its
angular dependence is similar to a sin � dependence, which
agrees with the simple Drude model. The maximum magni-
tude is about 1 �V/K, which is two orders of magnitude
smaller than what we found in our experiment as shown in
Fig. 16. This result is very different in shape from our obser-
vation, missing the resonances at magic angles and it gives

the wrong temperature dependence �SJ�T in Boltzmann

FIG. 14. �Color online� Thermoelectric coefficient tensor �J. In Boltzmann transport, �J� ��	J /����.
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transport�. Therefore, we conclude that the single particle
picture is not able to describe the Nernst effect observed in
�TMTSF�2PF6.

It is interesting to note that the Nernst signal Sxz has a
similar angular dependence as the experimental Nernst effect
Szx, showing a peak near c and a sign change. However, the
geometry is completely opposite and the value is about eight
orders of magnitude too small. Experimentally we couldn’t
detect a sizable Sxz, though we did not optimize the experi-
mental setup for that measurement.

Comparing the off-diagonal elements of SJ �i.e., the Nernst
effect�, we find that the elements in the upper triangle, Sxy,
Sxz, and Syz are much smaller that those in the lower triangle,
Syx, Szx, and Szy. More surprisingly, the conjugate elements
don’t have the same angular dependence. Does this violate
the Onsager relation?35,36 The answer is no. The Onsager
relation only states constraints on 	 and � and �� �defined in
Eqs. �4��:

	ij�H� = 	 ji�− H�, �ij�H� = � ji� �− H� . �20�

By symmetry, we know that 	ij��ij� is an odd function of
magnetic field H for i� j.

	ij�H� = − 	ij�− H�, �ij�H� = − �ij�− H� . �21�

Together with the Onsager relation Eq. �20�, we can find

	ij�H� = − 	 ji�H�, �ij�H� = − � ji�H� . �22�

This is exactly what we see in the calculations �except
	yz��yz� and 	zy��zy�, which are not real Hall effects since
the magnetic field is in the plane�. However, the ther-

mopower tensor SJ is the product of �J and �J. In general one
should not expect Sij =−Sji. This is only true when we con-

FIG. 15. �Color online� Thermoelectric power tensor SJ, which is the product of resistivity tensor �J �Fig. 13� and thermoelectric coefficient
tensor �J �Fig. 14�.

FIG. 16. �Color online� Comparison of Szx between calculations
�Fig. 15� and experimental data �Fig. 9�.
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sider an isotropic system, where �ii=�� and �ij =�H for i� j.
In an anisotropic system like �TMTSF�2X, �xx��yy ��zz. If
we ignore the Hall effect, we will have Sxy ��xx�xy
��yy�yx�Syx. Nevertheless, the Nernst effect Sij�i� j� is an
odd function of H and the Seebeck effect Sii is an even
function of H as long as there is a inversion symmetry.

In summary, we numerically and analytically calculated

the thermopower tensor SJ by evaluating both the conductiv-
ity tensor 	J and thermoelectric coefficient tensor �J. The nu-
merical results agree well with the analytic calculations. This
gives us confidence on the reliability of our calculations. It is
clear that Boltzmann transport within a single particle picture
is not consistent with our observation in �TMTSF�2PF6.
Therefore, correlation effects due to the strong e-e interac-
tion should be considered in understanding the giant Nernst
effect found in �TMTSF�2PF6. However, we note that the
angular dependence of Szx fits the data in �TMTSF�2ClO4

very well, though there is a factor of 10 or so difference in
magnitude.34 Our results are not limited to the Bechgaard
salts �TMTSF�2X. For any Q1D system with an open Fermi
surface, all the transport coefficients can be calculated using
our results based on Boltzmann transport in a tight binding
model. Our original results should prove useful for further
investigations.

IV. DISCUSSION

The giant value of the Nernst effect and the Nernst reso-
nances at magic angles are not understood and it appears
difficult to explain them in conventional Fermi liquid models
as illustrated by comparing our experiments with Boltzmann

transport calculations. An exotic feature is that the Nernst
signal changes its sign sharply at magic angles, with three
“resonances” within 70° in our measurements. As we know,
the sign of the transverse electric field is determined by the
cross product: �T�B. Of course, the physics really involves
E=v�B. Since the temperature gradient is fixed, the only
quantity that could possibly change its sign is the component
of B. As the magnetic field passes through a magic angle, the
only component of magnetic field that could change sign
relative to a magic angle is the one that is perpendicular to
the direction of the magic angle. Therefore, we have to con-
clude that the Nernst signal in �TMTSF�2PF6 comes from
v�B�. This means that whatever is moving is confined in
the magic angle plane. The main idea that underlies our in-
terpretation of the Nernst resonances is that the transport is
only coherent at the planes which are “parallel” �or close to
parallel� to the magnetic field. In other words, the coherent
electronic motion is controlled by the orientation of the mag-
netic field relative to the planes defined by the conducting
chains and the interchain directions �Fig. 17�.

The nature of the coherence is not clear at this moment.
One possibility is the quasiparticle coherence. For example
we may have a field induced interchain and/or interplane
decoupling picture. Figure 18 shows the basic idea of this
picture. �TMTSF�2PF6 is a Q1D system, which consists of
conduction chains along the a axis. The chains are weakly
coupled with each other. When the magnetic field B is far
from a magic angle, e.g, c�, the interchain coherent coupling
in this direction is effectively suppressed by the large normal
field component, i.e., tc

eff=0 when B��B* �here B* is a
crossover magnetic field scale�. In other words, there is no
coherent transport in the ac plane for sufficient perpendicular
field �Fig. 18 1□ , 5□�. When B is parallel to the c� direction,
the coherent coupling in the c direction is restored and a
coherent ac plane is formed �Fig. 18 3□�. If we tilt the mag-
netic field slightly upward, there is a small component B� of

FIG. 18. �Color online� Field induced interchain and/or inter-
plane decoupling. 1□ : B��B*, tc

eff=0, chains are decoupled, Nernst
signal is zero Szx=0; 2□ : B��B*, tc

eff�0, chains are coupled, Szx

�0; 3□ : B�=0, tc
eff�0, chains are coupled, Szx=0; 4□ : B��B*,

tc
eff�0, chains are coupled, Szx�0; 5□ : B��B*, tc

eff=0, chains are
decoupled, the Nernst signal is zero Szx=0.
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B normal to this plane �Fig. 18 2□�. Here �� is small enough
that B��B*. So the plane is still coherent. In the presence of
temperature gradient −�T, there is a transverse electric field
B, the Nernst effect. When we tilt the field slightly to the
other side of the magic angle, everything is the same except
the sign of B� reverses. Therefore, the sign of the Nernst
signal is reversed �Fig. 18 4□�. This scenario is then repeated
at the other magic angles as in Fig. 17.

In fact, the idea of field induced decoupling is not new.
Strong et al.10 considered the isolated conducting planes, ab
planes, of �TMTSF�2PF6 as 2D non-Fermi-liquid due to the
strong e-e interactions. The possible non-Fermi-liquid
ground state of “isolated” �TMTSF�2PF6 chains is supported
by transport,41 optical,24 and thermal transport25 measure-
ments. The effect of field induced coherent coupling �decou-
pling� is supported by temperature and angular dependence
magnetoresistance studies.42 However, this theory is not uni-
versally accepted due to the unknown nature of the non-
Fermi-liquid state and the lack of a detailed model.

Another possibility is the 2D superconducting phase co-
herence proposed by Ong et al.17 Ong points out that normal
quasiparticles usually give a thermopower much larger than
the Nernst signal,20 whereas we have a large Nernst signal
with undetectably small thermopower. On the contrary, vor-
tex flow naturally produces an electric field that is predomi-
nantly transverse. This is generally true for most conven-
tional systems, as well as HTc cuprates.20 Implicit in this
model is the ability of the magnetic field to destroy phase
coherence in the planes to which it is normal. It is natural
that the vortices penetrating perpendicular planes destroy su-
perconductivity. This is similar to the decoupling model dis-
cussed above and has the consequent “resonances” at magic
angles.

V. CONCLUSION

We present a detailed study of the Nernst effect Szx in
�TMTSF�2PF6 as a function of temperature, pressure, mag-
netic field magnitude, and direction. The data agree well with
our previous measurements.18 We have calculated the Boltz-
mann transport coefficients by both numerical and analytic
methods with realistic band parameters within the single re-
laxation time approximation. The two calculations agree with
either very well, but fail to describe the experimental data.
The large magnitude, resonantlike angular field dependence
and the nonlinear field and temperature dependence cannot
be understood within the semiclassical approximation of the
Boltzmann transport. The sign change of the Nernst effect at
magic angles strongly suggests that the transport is effec-
tively 2D in lattice planes parallel or close to the orientation
of magnetic field. The nature of the coherence is not clear at
this moment. We suggest that the answer may lie in field
induced decoupling of the strongly correlated chains.
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APPENDIX

Here we describe the elements of our analytical treatment.
We define �b
kyb and �c
kzc. In the presence of a mag-
netic field in the bc plane, B= �0,B sin � ,B cos ��. Let us
define 
b

�

b cos � and 
c
�

c sin �. Here we have 

b

= �e�v fBb and 

c= �e�v fBc, e�0 is the electron charge. Then
the equations of motion become

d�b

dt
= 
b

��1 − � cos �b − � cos �c� ,

d�c

dt
= − 
c

��1 − � cos �b − � cos �c� . �A1�

The exact solutions are hard to obtain. However, since
� ,��1, the solutions can be approximated to first order by
an iterative method

�b�t� � �b
0 + 
b

�t − � sin��b
0 + 
b

�t� − �

b

�


c
� sin��c

0 − 
c
�t� ,

�c�t� � �c
0 − 
c

�t + �

c

�


b
� sin��b

0 + 
b
�t� − � sin��c

0 − 
c
�t� .

�A2�

Note here 
b
� /
c

� diverges as �→0, and 
c
� /
b

� diverges
as �→90°. So this solution is only good at 0���90°. One
has to be aware that as B approaches b or c, this solution
may not give the correct result. With the help of Jacobi’s
expansions, it is straightforward to evaluate v�t� �Eq. �19��
and 
v�. After tedious but straightforward calculation, we
obtain the conductivity tensor 	J �Eq. �A3��. Here we use the
approximation ����1, and only keep the leading terms in
�, �, �2, and ��. For simplicity, we also use the antisym-
metric property of 	J

	xx =
2e2�

�


v f

bc
�1 − �J1��� − �J1���� ,

	yx = −
2e2�tb

�
2c
��


b
��

1 + �
b
���2 −

�2

2
J1���

2
b
��

1 + �2
b
���2

+ ���

2
J1��


b
�


c
�� +

�2

2
J1��


c
�


b
���

�� �
b
� − 
c

���
1 + �
b

� − 
c
��2�2 −

�
b
� + 
c

���
1 + �
b

� + 
c
��2�2��

and 	xy = − 	yx,

	yy =
4e2�tb

2

�
3v f

b

c
� 1

1 + �
b
���2 +

�J1���
2

1

1 + �2
b
���2

+
�

2
J1��


b
�


c
��� 1

1 + �
b
�� − 
c

���2 −
1

1 + �
b
�� + 
c

���2�� ,
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	zx =
2e2�tc

�b
2 ��

c

��

1 + �
c
���2 +

�2

2
J1���

2
c
��

1 + �2
c
���2

− ��2

2
J1��


b
�


c
�� +

��

2
J1��


c
�


b
���

�� �
b
� − 
c

���
1 + �
b

� − 
c
��2�2 +

�
b
� + 
c

���
1 + �
b

� + 
c
��2�2��

and 	xz = − 	zx,

	yz =
2e2�tbtc

�
3v f
�J1��


c
�


b
��� 1

1 + �
b
�� + 
c

���2

+
1

1 + �
b
�� − 
c

���2� ,

	zy =
2e2�tbtc

�
3v f
�J1��


b
�


c
��� 1

1 + �
b
�� − 
c

���2

+
1

1 + �
b
�� + 
c

���2� ,

	zz =
4e2�tc

2

�
3v f

c

b
� 1

1 + �
c
���2 −

�J1���
2

1

1 + �2
c
���2

+
�

2
J1��


c
�


b
��� 1

1 + �
b
�� − 
c

���2 −
1

1 + �
b
�� + 
c

���2�� .

�A3�

It is clear from Fig. 12 that the analytic calculation repro-
duces the numerical results very well. Due to the limitation
of our expansion, not every minor detail was reproduced. For
example, in this first order approximation, 	xx is independent
of the angle in analytic form, while numerically it shows a
very weak angle dependence. The good agreement between
different calculations give us confidence about the reliability
of the calculations. Once we know the analytic form of the
conductivity tensor 	J, we can take its energy derivative to
obtain 	J �Eq. �A4��. From Eq. �1� we can obtain the thermo-

electric power tensor SJ. The analytic form of SJ would be too

long to write down here since every term in SJ is the sum of
three products of two matrix elements. We just numerically
calculate the matrix product. Here we only present the angu-
lar dependence of all quantities in order to compare with the
experiment. In principle one could obtain temperature and
field dependence with these formula

�xx = −
2�kB

2Te�a

3
2bc
��1 − �J1��� − �J1����

+ 3��J1��� + �2J1���� + �J1��� + �2J1������ ,

�yx =
4�kB

2Te�

3
2c

tb
2

ta
2


b
���1 + 2�
b

���2�
�1 + �
b

���2�2 ,

�xy = − �yx,
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