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Fermi coordinates, where the metric is rectangular and has vanishing first derivatives at each
point of a curve, are constructed in a particular way about a geodesic. This determines an expansion of
the metric in powers of proper distance normal to the geodesic, of which the second-order terms are
explicitly computed here in terms of the curvature tensor at the corresponding point on the base
geodesic. These terms determine the lowest-order effects of a gravitational field which can be measured
locally by a freely falling observer. An example is provided in the Schwarzschild metric. This dis-
cussion of Fermi Normal Coordinate provides numerous examples of the use of the modern, co-
ordinate-free concept of a vector and of computations which are simplified by introducing a vector
instead of its components. The ideas of contravariant vector and Lie Bracket, as well as the equation
of geodesic deviation, are reviewed before being applied.

I. INTRODUCTION

N 1922 Fermi showed' that, given any curve in
a Riemannian manifold, it is possible to introduce
coordinates near this curve in such a way that the
Christoffel symbols vanish along the curve, leaving
the metric there rectangular. Several developments
of this idea followed. One was a generalization® of
the theorem to a manifold with a symmetric affine
connection T,,°, but without necessarily assuming
any metric structure. A second development was
an inquiry which showed that in general no co-
ordinates exist for which I,,” = 0 on surfaces of
dimension greater than one, and which developed
criteria for the special situations where this was
possible.®> A third variation of Fermi’s idea is the
set of coordinates based on an arbitrary curve
which Synge* calls Fermi coordinates. Here one
allows a few nonzero Christoffel symbols, although
retaining a rectangular metric, for the advantage
of making the curve become an axis of the coordinate
system. These coordinates, as Synge shows, form a
nonrotating system in a natural physical sense for a
(not necessarily freely falling) observer in a gravita-
tional field.

* Based in part on a Ph.D. Thesis by F. K. Manasse,
Princeton University, 1961. .
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In this paper we consider not a modification or
generalization of Fermi’s idea, but a specialization
and particularization of it. We specialize to the case
where the curve in question is a geodesie, and we
choose a particular set out of the many coordinate
systems which satisfy his T',,” = 0 condition along
this geodesic. The resulting coordinates we call
Fermi normal coordinates because of an analogy to
that particular choice of the many coordinates
satisfying I',,° = 0 at a single point, called Riemann
normal coordinates,” which in addition gives the
series expansion®

ds' = {n, + Ros22’® + 0[@)*]} da* da’. (1)

The primary mathematical contribution of this
paper is to compute the quadratic terms of a cor-
responding expansion in Fermi normal coordinates
[see Eqs. (66)]. In this case the expansion parameter
is the geodesic distance normal to the given geodesic;
the expansion is valid for a limited region of space,
and for all time. Thus, Fermi normal coordinates
provide a standardized way in which a freely falling
observer can report observations and local experi-
ments. In particular, the quadratic terms of the
metric, which we compute in terms of the curvature,

5 See, for example, L. P. Eisenhart, Riemannian Geometry,
(Princeton University Press, Princeton, New Jersey, 1926).

& Here »,, = diag (—1, 1, 1, 1) is the Lorentz metric.

We shall use Greek indices for space-time (y, », ete. = 0, 1,
2, 3), while Latin indices give components along spatial axes

(%, j, etc. = 1, 2, 3). Our sign conventions for the curvature
tensor are
Eyog = e Typ — 0Ty"a — (I‘Mvarf!vﬁ - I‘“’gI‘,"a),
and
R,, = R,%,,.

The Riemann tensor convention corresponds to Cartan’s
definition (reference 13) of the curvature forms 0,” =
8,74 dx* dzf in terms of the connection forms

w, = T, dze, 0, = du,” — o @,
which definition is also valid in orthogonal (or other non-
holonomic) frames.
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determine the effects of gravitational field gradients
upon experiments done in a freely falling elevator.

The procedure for constructing Fermi normal
coordinates, which is given in Sec. II, is a variation
of the standard procedure for constructing Riemann
normal coordinates. It is also a special case of the
procedures used by Levi-Civita’ or Synge* to
construct (inequivalent versions of) Fermi coor-
dinates about an arbitrary, nongeodesic, curve. The
present paper is very closely related to Levi-
Civita’s, since it discusses some of the same topics,
but in inverse order. Levi-Civita, in the paper in
question, developed for the first time the equation of
geodesic deviation and used Fermi coordinates as a
technique for simplifying this equation to display its
properties more clearly. In contrast, our primary
interest is here in the Fermi coordinates, but we
shall use the equation of geodesic deviation as a
device for studying the properties of Fermi co-
ordinates and for computing the metric tensor in
these coordinates.

The major part of the present paper is devoted
to studying properties of the Fermi normal co-
ordinates constructed in See. II. In Sec. IV we show
that this construction leads to a nonsingular
coordinate system in a neighborhood of the given
geodesic, and in See. V we show that these co-
ordinates satisfy the Fermi conditions

guy[G‘ = 77;”; (2)
%le = 0, ®3)

along the given geodesic (. In these discussions,
as well as in later examples, it is useful to have
unambiguous ways of indicating a vector without
specifying a coordinate system, and of displaying its
components in different coordinate systems without
confusion. These notations, based on the idea of a
tangent vector as a differentiation, are reviewed in
Sec. II1. This idea of a vector is also used in Sec. VI
where we review the equation of geodesic deviation
in order to see precisely what vector satisfies it.
Then, in Sec. VII, we note that certain vectors
occurring in the construction of Fermi normal
coordinates must satisfy the equation of geodesic
deviation; using this fact we evaluate the quadratic
(curvature) terms in the expansion of the metric
analogous to Eq. (1). Finally, Sec. VIII is an
example, where, starting from the Schwarzschild
metric in standard Schwarzschild coordinates, we
evaluate the metric in Fermi normal coordinates
surrounding a radial timelike geodesic. This rep-
resents this metric in a rest frame of a particle

7T. Levi-Civita, Math. Ann. 97, 291 (1926).
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of negligible mass freely falling toward a large
central mass. In the following paper,® this serves as
a starting point from which to compute the metric
surrounding a finite but small mass falling radially
toward a large central mass, a particular case of
the two-body problem in general relativity.

The paragraphs of mathematical “review” (Secs.
III and VI), although they contain nothing new or
original, are not considered by the authors as the
least important part of this paper. Most physicists,
even those very familiar with general relativity,
continue to use the same definition of a vector as
did Einstein, in spite of the considerable progress
by mathematicians in the intervening half century.
A particularly careful statement of this definition
by Synge and Schild® gives a precise meaning to
the sentence ‘“The quantities v* are components
of a contravariant vector” without finding it worth
the trouble to write a sentence of the form “a
contravariant veetor is a ...” The end of this
sentence is, in fact, either rather unhelpful'® or
rather long'' when it merely elucidates the trans-
formation law definition. The transformation law
outlook on geometry was an attempt to broaden'’
the Erlanger Programm viewpoint: (a geometry is
characterized by invariance under a group of
transformations) without repudiating it completely.
The more geometrical approach to geometry, based
on an intuition rooted in the classical studies of
curves and surfaces in Euclidean three space, was
hampered for a time because its most powerful
computational techniques’® employed elements
which were defined only by their intuitive signif-
icance. As a consequence, many demonstrations
were clear only to mathematicians with sufficient
intuition.”® This difficulty was eliminated by
Chevalley'* who gave new definitions of tangent
vectors and differentials, providing them with a

8 F. K. Manasse, J. Math. Phys. 4, 746 (1963) (following
paper).

® J. L. Synge and A. Schild, Tensor Caleulus (University
of Toronto Press, Toronto, 1952), Sec. 1.3.

0T, Y. Thomas, The Differential Invariants of Generalized
Spaces (Cambridge University Press, New York, 1934,) p. 30.

11N, Steenrod, The Topology of Fibre Bundles (Princeton
University Press, Princeton, New Jersey, 1951), Sec. 6.4.

120. Veblen and J. H. C, Whitehead, The Foundations
of Differential Geometry, (Cambridge University Press,
New York, 1932, reprinted 1953), Sec. 16.

13 K. Cartan, Legons sur la géoméirie des espaces de Riemann
(Gauthier-Villars, Paris, 1951).

¥ . Chevalley, Theory of Lie Groups. (Princeton Univ-
ersity Press, Princeton, New Jersey, 1946), p. 77. A definition
suitable for differentiable, rather than analytic, manifolds
can be found in reference 15 or in H. Flanders, Trans. Am.
Math. Soc. 75, 311 (1953). A definition of differentiable
manifold which parallels Chevalley’s for the analytic case is
given by de Rham, Variétes Différentiables (Hermann et Cie.,
Paris, 1955).
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clear formal structure compatible with their intuitive
significance. These definitions are now also available
in introductory texts.'®

In Sec. IIT and subsequently we use this definition
of a contravariant vector as a tangent to a curve.
Since a curve is easily thought of in a coordinate-
independent way as a moving point P(f) in the
manifold, this approach can avoid all mention of
coordinates in defining a vector. A theoretical
physieist should not be surprised that the tangent
to a curve P(t) is conceived of as the generator
of infinitesimal translations along the curve and,
hence, denoted by 3/dt.

II. CONSTRUCTION OF FERMI NORMAL
COORDINATES

Conditions (2) and (3), which Fermi coordinates
satisfy, state that to the maximum extent possible
one desires space in the neighborhood of some
given geodesic G to look like flat space in rectangular
coordinates. As motivation for the construction
which will be given in this section, we suggest that
a plausible way to try to achieve this is to use as
many ‘‘straight’’ lines (geodesics) as possible in
laying out the coordinates. What follows now is
merely a recipe which purports to construct a
coordinate system; the proof that it does so (i.e.,
that the coordinates constructed by this recipe are
non-singular) is deferred to See. IV. That Eqgs. (2)
and (3) are satisfied is not shown until See. V.

In order to uniquely specify a set of Fermi normal
coordinates it is necessary to choose arbitrarily a
point P, to be the origin, and an orthonormal set
of vectors e,, €, €,, and e; at P, to fix the coordinate
axes there. The first step in the construction is then
to solve the geodesic equation and obtain that
unique geodesic ¢ which starts at P, with tangent
e, there. We will describe the geodesic G by the
equation

P = n(r). @)
The condition that G “‘starts at P, is just
P, = h(0), ®)

and does not imply that we refuse to consider
negative values of 7.

Because ¢ is a geodesic, its tangent at any two
points on @ is related by parallel displacement along
@G. At P,, the tangent was e, which we now call
e,(0), while eo(r) will mean the tangent to G at
P = h(r). Similarly, we can define e;(r) fort = 1,2, 3
as vectors at h(r) obtained by parallel displacement

15T, J. Willmore, An Introduction to Differential Geometry
(Clarendon Press, Oxford, England, 1959), Chap. 6, Sec. 2.
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P(xP)=h(x9,xis;5)

ORTHOGONAL
GEOQODESIC —\.

.X'S";X)

. ~
h(x9)=h(x%,x!s-}0)

Fi1g. 1. Fermi normal coordinates are determined by a
reference point P, and an orthonormal reference frame
e, there. The time axis G of the coordinates is the geodesic
h(r) tangent to e, at Py. The point P(x#), with given Fermi
normal coordinates z#, is found by first following G for a
proper time r = z% and then following a certain orthogonal
geodesic at a proper distance s = [(x!)? -+ (22)2 + (z8)]h.
This second spacelike geodesic h(x?, zs™1, A), is chosen
by requiring that for A = 0, where it crosses @, its tangent
has direction cosines z’s™ relative to the base vectors e;
carried by parallel transport along G from P,.

along @ of the vectors e; = e;(0) given at P, = 1(0).

The preseription for locating the point P whose
Fermi normal coordinates are z* can now be given.
We assume for simplicity that e, is a timelike
vector and e; are spacelike. Then given z*, we
construct at the point h(z°) [i.e., along G at r = z"]
the unit vector

v = a'e,(z), (6)
whose (spatial) direction cosines o are
o' = a'/s, )
with
$ =@ =@+ ®)
There is then a unique geodesic
P = h=";a’;N), (9)

with path parameter A which starts at A(z") and
is tangent to v there. The point P(z*) with Fermi
normal coordinates z* is found by proceeding along
this geodesic a proper distance s, i.e.,

P(") = h(z’;a';s). (10)
This prescription is summarized in Fig. (1). When

points P are represented by their coordinate values
¥ (P) in some coordinate system'® in which the

16 Since we think of the metric or any other tensor as an
object which is independent of our choice of coordinate
system, we prefer that the indication of the particular co-
ordinate system to which a set of tensor components g,,
refers be placed on the component (index) part of the symbol
rather than on the tensor part. Thus ¢,, and g,..,- are compo-
nents of the same metric tensor in two coordinate systems,
while, should the occasion arise, ¢,, and ¢’,, might represent
two different metrics in a single coordinate system. See also
the transformation laws of Eqs. (40) and (76).
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metric components g¢,.,.(y°) are known, the con-
structions which we have prescribed lead to the
relationship (10) with the point P(z*) given in
terms of its coordinates 3" as y” (z*). These func-
tions y”'(z*) specify the coordinate transformation
between the arbitrary coordinates y”' and the Fermi
normal coordinates z*. We have not needed to
mention these arbitrary initial coordinates y** while
prescribing the construction of the Fermi normal
coordinates z*, and have avoided doing so to
emphasize the fact that the point P(z") correspond-
ing to given values of z* is independent of the
coordinate system »* in which the computations
may have been performed.

III. TANGENT VECTORS AND LIE BRACKETS

In the preceding construction of Fermi normal
coordinates, the vectors which appeared were all
used as tangents to curves. We want to recall here
that all contravariant vectors can be thought of as
tangents to curves and identified with the derivative
with respect to the corresponding curve parameter.

Given a curve y*(¢f) in some coordinate system y*,
the tangent vector

& = dy*/dt (11)

is clearly a contravariant vector, and can be used
to compute derivatives 9/0¢ along the curve y*()
by the rule

of _ dfy'(®)

EYARNT (12)

Conversely, given a contravariant vector field'
t“(y”), we can solve the ordinary differential equa-
tions

ay*/dt = £(y*() (1n

to obtain eurves y"(f) with tangents t*.

The advantage of thinking of contravariant
vectors " as tangents to curves is that this helps
us find a concrete mathematical object we can
identify with the abstract vector t whose components
t* appear in our computations. This object is the
operation of differentiation along the curve whose
tangent is t. That is, we write

t = 9/t (13)

The right-hand side of this identification is an
operation which can be described in a coordinate-
independent way. The tangent, t or 8/3t, to a curve

17 A vector #* given only at a point, or along a curve, etc.,

can always and in many ways be considered part of a vector
field by arbitrarily defining ¢#(y=) at other points.
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P(z) is the operation on scalar functions {(P) defined by
of(P)/at = df(P()/dt, (14)

ie., by inserting the equation of the curve and
taking an ordinary derivative. Since the operator
4/t is applicable to all scalar functions, it can be
applied in particular to those four sealar functions
y*(P) we may be using as coordinates:

aP(P)/ot = dyt/dt = . (15)

In this way one can recover the compenents ¢ from
the vector 8/9t. Conversely, writing Eq. (12) in
the form

t = 9/0t = 1" 8/3y", (16)

we construct the contravariant vector 4/dt from a
knowledge of its component, #*. Equation (16) shows
9/0t as a linear combination, with coefficients ¢,
of four contravariant base vectors d/dy". These base
vectors are tangents to the coordinate lines, e.g.,
8/8y° is the tangent 8/d¢ to the curve y° = const,
y° = t. We have frequent use for Egs. (15) and (16)
in what follows. In particular, Eq. (16) provides a
method of displaying the components of a vector
which simultaneously reminds us what coordinate
system is being used and is, in this respect, superior
to a statement of the form t = (°, ¢, &, t*). We
also find it convenient to be able to designate the
components of a vector in several different ways,
and thus write

(8/80)" = (b* = ¢ = ay*/at. 7

Although we represent contravariant vectors t by
the partial derivative symbol 9/d¢, it is not always
possible to think of several vectors simultaneously
as having the properties of standard partial deriva-
tives.'® In particular, consider the commutator of
two tangent vector fields u = d/9u and v = 3/9v:

_ 9 a_f) _32 <ﬁ>
fu, vif = du <av v \du,

Since v is a field, df/dv is a function and can be
subsequently differentiated along a curve tangent
to u. Thus the right-hand side of Eq. (18) is well
defined, and evidently does not depend on the

coordinates used to evaluate it. If we do pick a
coordinate system, e.g., 8f/dv = v" 3f/9y", Eq. (18)

(18)

18 A sgingle vector 9/at differs from a partial derivative
by the possibility of vanishing; e.g., the tangent to a constant
curve P(t) = P, is the zero vector (4/0t) = 0, since §f/dt =
df(Po)/dt = 0 for all functions f. However, in regions where
d/8t # 0, coordinates can be introduced so that a/at = a/ay®
is a conventional partial derivative.
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reads
o '\ of
u, v =(u'-———v'——>——, 19
o =\, o)
or
r » a
[u,v] = " —u W) —- (20)
ay”*

As a linear combination of the base vectors 9/9y",
the object [u, v] evidently is itself a contravariant
vector, called the Lie Bracket of u and v. Its compo-
nents are displayed in Eq. (20). In case (as in this
paper) a covariant derivative is defined, Eq. (20)
can be rewritten as

“ o

fu, v}* = o* 0" — w0, 21)

since the symmetry of the I';, = T, lets them
cancel here in any case.

We most often wish to use Eq. (21) in the case
where we know [u, v] = 0. This is true whenever u
and v can be thought of as tangents to coordinate
lines in a surface. That is, let P(u, v) be the equation
of a “surface” parameterized by u, », and let u =
d/0u be the tangent to lines of constant v in this
surface, and similarly v = 3/9v is tangent to lines
of constant u. Then [u, v] can be evaluated from
Eq. (18) by setting f = f(P(u, v)) on the right-
hand side. The derivatives are then standard partial
derivatives which commute, so [u, v] = 0.' [This
derivation requires only that P(u, v) be a differen-
tiable point-valued function; it actually represents
a two-dimensional surface only if u and v are linearly
independent vectors.]

IV. REGULARITY OF FERMI NORMAL COORDINATES

According to the construction of Sec. II, Fermi
normal coordinates are specified in terms of the

solution
P = kir;a’;N) (22)

of the geodesic equation describing a geodesic which
begins (A = 0) at the point

R(r;a’; 0) = h(7) (23a)
on the central geodesic G, and whose tangent there is
(8/0MNr~o = (23b)

As used in Sec. II, the parameters o' satisfied
() =

a‘e(r).

1, but we ignore this condition now and

12 To see that the Lie Bracket does not always vanish,
an example suffices. For the unit vectors e; = 3/86 and
e, = (sin #)7! 3/, on the unit sphere, compute from Eq. (20)

leg, e,] = —cot fe, 7 0.
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consider all values of the ’. We first prove that
R(r;sa’; N) = h(r;a'; s\ (24)

holds for all s (by rescaling the path parameter A)
so that Eq. (10) defining Fermi normal coordinates
may be replaced by

P@" = h(z’; z*; 1). (25)

This form allows us to verify more easily the dif-
ferentiability of the inverse relationship, z*(P), i.e.,
of the coordinate functions.

We regard k() and h(r; a’; \) as the point-valued
function of one and five real variables, respectively,
computed without regard to any interpretation
placed on their real-number arguments. (In contrast,
common usage for real-valued functions dictates that
f(z®) and f(y*') mean different functions of their
four real arguments so as to represent the same
function of points f(P) in two different coordinate
systems.) Then, to prove Eq. (24) we rewrite Eq.
(22) in some arbitrary regular coordinate system
" (P) as

¥ =1 (r; a5 N). (26)

The functions 2*" are simply the wunique solutions
of the differential equations

dh” u dh*’ dr®’
W + [I‘u' ﬂ']v’-h’ _d_xjd—x— = 07 (27)
which satisfy the initial conditions
R (r;a'50) = h*'(2), (28)
and
dr* (r; a'; 0) _ (i)“' o o
d)\ - E)N - =« (e.'(T)) 3 (29)

where y* = h*(r) is the central geodesic G. After
remarking that the differential equation (27) is
unchanged upon replaeing A by s\, we prove Eq. (24)
by verifying that, as function of \, 2*'(r; sa'; \)
and A*'(r; «'; sA) not only satisfy the same dif-
ferential equation (27), but also the same initial
condition. For, each reduces to A*'(r) for A = 0
and has a first derivative so'(e;(r))* at A = 0.
Thus, by the Uniqueness Theorem® for solutions
of differential equations we have

R (r;8a’; N) = B*'(7; a*; sN), (24a)

20 See, for example, ¥. J. Murray and K. 8. Miller, Exzistence
Theorems, (New York University Press, New York, 1954),
Chap. 2, Theorems 1, 3; Chap. 3, Theorem 2; Chap. 5,
Theorem 6. A discussion of the properties of geodesics from
which we have borrowed much is found in H. Seifert and
W. Threlfall, Variationsrechnung ¥m Grossen (B. G. Teubner,
Leipzig, 1938), footnote 20, p. 97.
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which represents Eq. (24) in the y*' coordinate
system.

The definition of Fermi normal coordinates in
Eq. (25) gives now the transformation law

¥ (@) = B % 2% 1), (30)

By a standard theorem,? the solutions of ordinary
differential equations are differentiable functions of
the initial conditions, so we have established the
differentiability of »*'(z*). To show the existence
of a differentiable inverse relation z"(y*), represent-
ing the coordinate functions x*(P), we must show
that the Jacobian |3y* /x| does not vanish.”

The condition of a nonvanishing Jacobian is
precisely the condition that the coordinate axes do
not collapse, i.e., that the vectors d/dz" be linearly
independent. For, when we form the components of,
say, 4/9z° in the y*’ frame, they are dy*'/92°, so that
the determinant formed from the components of the
four vectors 9/9x" is

J = det (9y*'/0x%), (31)

and J # 0 is equivalent to the linear independence
of these vectors. We prove J # 0 by showing that,
along the central geodesic G,

(3/32") ¢ = eu(n).

Then, since e,(r) are orthonormal vectors, they are
linearly independent and J £ 0 on (. By continuity,
then, we have J = 0 in some neighborhood of G.

The basic fact we need in order to prove the
equation (8/9z")¢ = e.(r) in the preceding argu-
ment is the description in Fermi normal coordinates
of the geodesics entering their construction. This is
also the basis from which we will compute all other
properties of Fermi normal coordinates. Consider
then the curve P(\) defined in Fermi normal co-
ordinates by

(32)

0

r = 7 = const,

(33)

z- = a\, ' = const.

According to Eqgs. (25) and (24), this curve is given
by

PO\ = h(r;an; 1) = h(r;a'; N, (34)

and is, therefore, that geodesic whose tangent 9/9A
is given by Eq. (23b) at the point z° = 0, z° = =
corresponding to A = 0. But the components of
3/0N can be computed from Egs. (33), and are
(8/0N)° = 0 and (8/9))° = o, so

/N = o 8/0x". (35)

F. K. MANASSE AND C. W. MISNER

Comparing this with Eq. (23b) gives
(a/axi)zi=o = e,'(xo),

since the o' are arbitrary. Similarly, from Egs. (25),
(24), and (23a) we see that the curve P(r) defined by

(32a)

=7, (36)
' = 0,
is given by
P(r) = h(r;0;1) = h(+;0;0) = h(r), (36b)

and is the central geodesic ¢ whose tangent d/dr
is e,(7). But the components of the tangent (9/97)
are easily computed from Eq. (36) and give

(8/92%) 210 = €o(z). (32b)

To recapitulate, the question of the Jacobian or
of the linear independence of the 9/dz", reduces
by Eq. (32) to the linear independence of the e,(r).
But e,(r) are orthonormal, since they are defined
by parallel displacement of the orthonormal vectors
e,(0), and parallel displacement preserves inner
products,

er)-e(r) = nur. (37)

V. THE FERMI CONDITIONS

We have actually already proven that in Fermi
normal coordinates the metric is rectangular on G.
For by definition, the metric components are the
matrix of inner products of the base vectors, i.e.,

Gu(@®) = (8/32")-(8/02"), (38)
so Egs. (32) and (37) give
gw(xo; 0) = guv'G = Nu»- (39>

It may, nevertheless, be instructive to see this
equation arise by applying the tensor transformation
law to the metric components g, (y°) of some
original coordinate system 3° :

- ,,<?_y_"_'>(§yi>= e, = |
Guvla g“ﬂ(ax" Ao/, =& = (0
In the central equality here we recalled that
(8y"'/dx")¢ are the components of (3/9z")¢ = e,(z")
in the y*" frame.

In order to show that I'.%, [ = 0 holds in Fermi
normal coordinates, we begin by considering the

consequences of the fact that the curve 2 = 7,
z' = o'\, satisfies the geodesic equation

d’z* . dx® da’

Dz + ' o = 0. (41)
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Substitution gives

M@ = r 2 = a'Na'a =0, (42a)
which holds in particular for A = 0:
It = r;2° = 0a'e’ = 0. (42b)

But now the TI';;* are independent of a' and sym-
metric in ¢ and j, while the «' are arbitrary, so

I'le = 0. (43)

To show that the other Christoffel symbols vanish,
we recall that each of the vectors e,(r) satisfies
the equation of parallel displacement along the
central geodesic z° = 7, z' = 0. In general, to
parallel displace a vector u along a curve P(t),
one solves the differential equation (linear)

w0 = dut/dt 4+ utT et (44)

We may take u to be any of the vectors e,(r) =
(3/082°)¢ whose components in Fermi normal co-
ordinates are therefore (e,)* = §,%, and t becomes
3/9r = €y = 8,°(3/9z"°)¢. Thus, from Eq. (44) we
obtain

Lle¢ = 0. (45)

Combining BEgs. (43) and (45) gives the second of
the Termi econditions,

ra“ﬁlg = 0 (46)

Since this implies (8g.5/92")¢ = 0, we have evalu-
ated the first two terms in a Taylor expansion of the
Fermi normal metric. The quadratic terms, which
require us to evaluate (9°g.s/92°92")¢, is computed
in Sec. VII, after a diversion to review the computa-
tional technique we will use.

VI. EQUATION OF GEODESIC DEVIATION®.2D

The construction of Fermi normal coordinates
involves families of geodesics. Let us consider only
a one-parameter family of geodesics for the present,
say P(n, s), where for each fixed value at n = n,,
P(no, s) satisfies the geodesic differential equation
with & as path parameter. The tangent vector
s = 9/ds can then be thought of as the generator
of infinitesimal translations along geodesic n, while
n = 4/0n is the generator of infinitesimal transla-
tions along a eurve P(n, s,) connecting corresponding
points (same value of s) on adjacent geodesics.
Along a fixed geodesic, n cannot vary arbitrarily,
since the adjacent geodesic can be determined by

21 For physical applications see F. A. E. Pirani, Acta
Phys. Polon. 15, 389 (1956); Phys. Rev. 103, 1089 (1957);
and J. Weber, General Relativity and Gravitaiional Waves
(Interscience Publishers, Inc., New York, 1961), Chap. 8.
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only two points lying on it. These restrictions on
n are expressed by the equation of geodesic deviation
which is a differential equation satisfied by n along
each geodesic, i.e., as a function of s.

To derive the equation of geodesic deviation, we
begin with the geodesic equation in the form®

8s/6s = 0, 7

where 6/6s is the covariant derivative along s.
This is, of course, just an abbreviation for

§*.,8" = ds*/ds + s°T " = 0, (48)

but the more compact notation lets us outline the
derivation without computations. Since Eq. (47)
holds for all values of n, we may differentiate it

to obtain
0 (és)
on < 63) =0

As the difference of two geodesic equations, this
should be an equation for the difference vector n,
that is, n should appear differentiated, rather than
as a derivative. The relationship which achieves
this is Eq. (21) which can be written

(49)

0 = [n, s] = és/én — én/ss. (50)

[The Lie bracket [n, s] vanishes since n and s
parameterize the surface P(n, s).] Before this relation
can be employed in Eq. (49), however, the covariant
derivatives must be written in the opposite order,

_ O (%) _ 8 (s 86 88
O—6n<5s>—53<6n>+{6n58 585n}s, (51)

or
§n/8s° + [8/6n, 8/8s]s = 0. (52)

When the commutator” of covariant derivatives
here is expressed in terms of the curvature tensor,
this Eq. (52) is the equation of geodesic deviation.
The computation is

{[8/0n, 8/8s]s}" = (su8") " — (5", u8"

= (8#;0113 - 'S‘“:ﬂa)sus + s“:v(sv:un" — nv;asa)
= 'R, 5.n"s" + s*,,In, s]”
= "R s, (53)

2 The entire derivation may be regarded as a process
of evaluating the commutators which relate Eq. (49) in the

curious form
d & a
b (&) =0

to an equation whose leading term is

#n_ 55 (0
5st s és \dn/"
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where we again use [n, s] = 0. Thus, we find for
the equation of geodesic deviation

8n"/8s8° + (s"R. M = 0. (54)

Let us briefly outline the principal properties of
this equation. It is a second-order, linear, ordinary
differential equation for n as a function of s. In addi-
tion to the trivial solution n = 0, it also obviously
has the solution n = s. A perhaps not so obvious
solution which can, however, be easily verified is
n = ss. The solution n = (A’s + B’)s (where the
adjacent geodesics coincide with the original one
but are parameterized differently) clearly satisfies

n-s = As + B, (55)

where A and B are constants [A = A’(s-s) while
s's = const according to the geodesic equations].
We can further show that every solution n satisfies
Eq. (55) by using the product rule of covariant
differentiation and the geodesic equation

8s,/6s = 0 to compute

PN u_g(a_ﬂ)_ &'n*
9s” (8" = os” (8,m) = Ss \'* &8s Su os?
= —8%"R usn’s" = 0. (56)

The constant A in Eq. (55) is related to the normal-
ization of the geodesic parameter, for by using the
Lie bracket relation [n, s] = 0, we find

nt &

] u
A=—6‘—9(s,‘n“)=s,‘—— — = - — (5,8).

o5  “on (57)

Unless s-s = 0, we can always modify any solution
n of the geodesic deviation equation, adding terms
of the form (A4s + B)s, to obtain a solution satisfying
n-s = (. This modification corresponds to a linear
change in the parameterization of the adjacent
geodesic, which is of course consistent with the
geodesic equation. According to Eq. (57) the condi-
tion n-s = 0 is consistent with the standard normal-
ization s§:s = =1 for geodesic parameters.

VII. QUADRATIC TERMS IN THE FERMI METRIC

A power-series expansion of the metric in Fermi
normal coordinates is determined by the derivatives
Gur.iies |@. The linear terms g,, ; |¢ z° were shown
to vanish in Sec. V, where we found that on the
central geodesic G all the Christoffel symbols vanish.
In this section we will compute the quadratic terms,
10m .51 le 'z, by first computing T,°%, s |e.

Since the equation I',%, = 0 holds for all z° at
z = 0, it may be differentiated with respect to z°
to give
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I‘na:,olo = O (583)

Also using T,%, |¢ = 0, we note that on G the
definition of the Riemann tensor® reduces to two
terms, and, in particular, from Eq. (58a) we find

(58b)

uaO,r’G = Ruva‘G-

The remaining derivatives of the affine connection
are

I'¥ale = (58¢)

"‘%( 'Jr’l‘ik + Ri“o‘k)lG;

as we now show by use of the equation of geodesic
deviation. Note that this last equation implies a
symmetry

Fi“i.kld + Pi“k,t"G + Fk“i.il(} = 0, (58d)

peculiar to these coordinates which follows from the
corresponding ‘“‘triple symmetry” of the Riemann
tensor.

The family of geodesics P(\) = k(r; a'; \) used
in constructing Fermi normal coordinates provides us
with four vectors, 3/3r and /8", which (since they
generate displacements between adjacent geodesics)
must each satisfy the equation of geodesic deviation
as functions of A for fixed r, &' [In contrast, P(r) =
h(r; a'; \) is not a geodesic unless Ao’ = 0, so we
have no family of geodesics with tangents 9/dr,
and neither d/da’ nor 3/d\ satisfies the equation
of geodesic deviation as a function of 7, even for
Xa’ = 0.] Although there are moderate amounts of
computation involved in what follows now, the basic
idea is quite simple. In the geodesic deviation equa-
tion (“4"n 4+ Rn = 0”) we insert known solutions,
n = 9/dr or 3/da’. At the point A = 0 (i.e., on G
where I,%, = 0), the second covariant derivative
term will reduce to the derivative of a Christoffel
symbol evaluated on G, and the only other term in
the equation will be the curvature term, so we will
obtain a formula “OT = R”, i.e., Eqs. (58).

The family of geodesics P = h(r; a*; \) is described
in Fermi normal coordinates by the equations

2’ = T, ' = a'\.

(59)

The components of the deviation vectors n, com-
puted using Eq. (17), are then

8/9r = 8/3z° = &" 8/9z",
d/da’ = X 9/dx* = N8, 9/9z".

(60)

(61)

Similarly, the vector s tangent to the geodesic is
3/ = o 9/9z". (62)

We use the components displayed here in the
geodesic deviation equation (54) which in detail
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becomes
dn*
e

+ na-sasﬁ<11’ua.ﬂ + Pvra (63)

The case n = 3/97 merely leads to some of Eqgs.
(58b) again, so we treat only the cases n = 9/da’.
Then dn’/ds becomes d(A5,°)/dN = §,°, and

dn*/d\* = 0. (63a)

But, since n* = A§,* vanishes for A = 0, Eq. (63)
is trivial on G unless we divide through by A before
setting A = 0. In order to accomplish this, the
second term in Eq. (63) can be expanded in powers
of \;

+2 %"- T, 4+ n’s°°Rot0s

rMB - Pa“frarﬁ) = 0.

26, T, 0’ = 2T g + 2)\('(%\ I',»",»ai>

G

- 2)\1“;“;‘)‘!@ aiak + 0(%2). (643;)

Then, at A = 0 where I',", = 0, we obtain from
Eq. (63)

@I 4 + R )]ea'a” = 0, (64b)
or
THe+ THhD]e = —3R"w + B Dle- (64c)

This equation ean be solved for I',; i|s by adding
to it one eyclie permutation,

(Pi“k.i + I‘;“.‘.k)la = —%(Rk“ii + Ro'"ik)'G) (64d)
and subtracting another,
(Fk“i,i + Pk“i.t’>lG = _%(Ri“k:‘ -+ Ri”ik)la' (64e)

The result, after using the symmetry of the connec-
tion I,", = I,°, is just Eq. (58¢).
From the definition of Christoffel symbols,

Guv.a = guar"a + gﬂruﬂa; (64f)

we find by differentiation that

Gur.asle = Ml asle + 1T asle.  (642)
Thus, Eqs. (58) imply that
Guv.0ale = 0, (64h)
and that, for g,,.:;]e, we have
Goo.i5le = 2Roio;i]a, (652)
gor.iile = FRojrs + Rour)le, (65b)
Gimiile = 3Riim + Bimidle- (65¢)

To summarize all the information we have obtained
about the metric in Fermi normal coordinates, we
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can write the Taylor series
goo = —1 + ROIOm!G 'z 4 .- , (66a)
g =0 + %Rozimla z'z™ + - ’ (66D)
gii = 8:; + iRitinle L SR (66¢)

Here the dependence of the metric on the spatial
coordinates z* is shown explicitly, while its depend-
ence on x’ is contained entirely in the curvature
components which are evaluated at z° = 0 for
each z’.

VIII. AN EXAMPLE

We compute the Schwarzschild metrie to quadratic
order, as in Eq. (66), in Fermi normal coordinates
surrounding a radial geodesic. In Schwarzschild
coordinates, which we will call 4* or T, R, ©, &,
the metric components g,.,. are displayed in the form

ds’ = o, dy*’ dy”
= —XdI* 4+ X' dR’ + R’ d&’
+ R?sin® © d9°, (67)
where
X =1-—2M/R. (68)

To find the equations of a radial geodesie, T(¢),
R(t), with ® and & constant, one may replace the
geodesic equations by two first integrals; one is
the normalization of proper time

1=XT" — X 'R, (69)
and the other is a dimensionless energy parameter
k= XT, (70)

which yields E(f) by quadratures, and expresses k
of the metric. (The primes here indicate derivatives
with respect to proper time ¢ along this geodesic.)
Eliminating 7" gives

B =X+R*=1—-2M/R, (71)

which yields R(¢) by quadratures, and expresses k
in terms of the maximum radius R, along the path,
where R’ = 0. The integration gives a cycloid

R = 1R, + cosw),
b= LRo(Ro/2M)}(w + sin v). (72)

Either R or the cycloid parameter w can be used
in place of proper time ¢ to identify points on this
geodesic, and thus serve as a time coordinate in
the comoving frame. Thus,

dR® R,

SR’ do’.

dr’ = =
2M/R — 2M /R, ~ 2M

(73)



744

After choosing a geodesic, the next step in con-
structing Fermi normal coordinates is to choose
an orthonormal frame along the geodesic. The
timelike base vector must be the tangent 9/t
and the symmetry of the present example determines
the others. Thus,

€ = 9/dtl¢ = T’ 8/9T + R’ 3/6R,

e, = 9/dzx|g = X 'R’ 9/0T + XT’ 9/9R, (74)
e, = 8/dyls = 1/R 9/30,

e; = 8/9zl¢g = 1/Rsin © 9/09,

where z* or xyzt are to be Fermi normal coordinates.
It is also easily verified from the components (e,)*’
displayed here that these vectors satisfy the nec-
essary parallel transport condition

5ea/5t = O = (ea)",;v’(eo)y,~

We must now compute the curvatures in the
Fermi frame by the tensor transformation law

Raﬂ'y& = Ru’v’0’1’(ea>u,<eﬂ)v,(e"/)ql(e5)1,7

which states that a tensor component is the contrac-
tion of the tensor with the base vectors indicated
by the indices. The Fermi base vectors e, we
have in Eq. (74), while the curvature components
R,, ., with respect to the Schwarzschild frame
are well known as

(75)

(76)

Ry = 2M /R,

Raosor = —(MX/R)sin’ @,

Risne = M/RX, -
Ryonrer = —MX/R,

Rii3z:3 = —2MR sin’ 0,

Risns = (M/RX)sin® ©.

(Here and below, only the independent nonvanishing
components are listed.) The computation then yields

Rugo = 2M /R?,

Rogro = Raoso = _M/ng (78)
R, = Rz = M/R37

R2323 = ‘*2M/R3.

Some of the simplicity of Eq. (78) as compared to
Eq. (77) was, of course, to be expected, for the Fermi
frame is orthonormal so that all components must
at least have the same dimensions, and the equi-
valence of the ® and @ directions must become
evident. However, a very surprising feature is that
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the gravitational field gradients in Eq. (78) depend
on the observer’s position R, but not upon his
velocity R’ (or energy k) with respeet to the mass
M, Thus the preferred rest frame indicated locally
by the Killing vector field /87 cannot be recognized
by an observer who measures all the gravitational
field gradients (78) at one point. He can only
discover the direction of the vector 9/4T by finding
a velocity (i.e. direction in the R — T plane) which
makes the fleld gradients constant in time, ie.,
by measuring R,,., .
The Fermi normal metric from Eq. (66) is

ds* = —[1 + ?—fs @+ - 2952)} ar
— g’%lg lxz de dz + 2y de dy — 2yz dy de]
it e+ e
+ :1 ks @~ 2z2>] dy?
+ :1 + 3% 2 — 2y2)} . (79)

The entire dependence of this metric on ¢ is through
the geodesic equation (72) which gives R(t).

A more compact form for the Fermi metrie (79)
is obtained by introducing spherical coordinates
r, 8, ¢ related to z, y, z by the standard formulas.
Taking the z direction as the polar axis we get a
diagonal metric,

ds* = —(1 — qu) df + dr* + (1 + 3w d6)’
+ (1 4 3qu — Yw(rsin 0de)’,  (80)
where
u = Mr*/R?, (81a)
and
g=3cos* 0 — 1. (81b)

Again, B must be considered the function of ¢ given
in Eqs (72), or equivalently one may take R as the
time coordinate and use Eq. (73) to eliminate df*
in favor of dR* in Eq. (80).

In the following paper® this metric provides
boundary conditions for a computation of tidal
deformations of a {reely falling Schwarzschild
singularity (wormhole mouth). It is also evidently
well suited to a calculation of tides in an elastic
test body whose center of mass would define the
geodesic ° = 0. We content ourselves here with
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a mathematical example and investigate the shape
of a sphere. Define a sphere = as the surface formed
by all points a fixed proper distance r measured out
orthogonally from some point on the central geodesic.
For the coordinates of Eq. (80) this is the surface
t = const, r = const, whose metric is, therefore,

@)y = A + ) d6)°
+ (1 + 5gu — 3wrsin 0dy)’.  (82a)

From this metric we find that the area of the sphere
% is just 4ar®, independent of the small quantity
u = Mr’/R? in first order, but a change in intrinsic
shape can be readily computed. The length of a
great circle ¢ = const over the poles of this sphere is

Lpoles = rf
0

Similarly, the circumference of the equator, 8 =
1
3T, 18

2

T4 30t de v 2er(l + 2. (82b)

Lequator ~ 2‘71'7'(1 - %,LL) (820)

As a measure of the distortion of the shape of this
sphere, then, we may take

n = Lnolea — Lequator ~ M —
Lpoles + Lequator

Thus, a sphere r = const is a surface shaped like
a football pointing toward the center of gravitation,

(83)

IX. RANGE OF VALIDITY OF THE
FERMI EXPANSION

In this section we point out that in most situations
where the Fermi metric expanded through quadratic
terms is a useful deseription, the time dependence
of the metric can be considered adiabatic, that is,
time derivatives of the metric will be negligible in
comparison to space derivatives. Order of magnitude-
wise, the Fermi metric can be written

oK

~ 2 3
g~1+rK(i +r 3

+ 0@Y, (84)
[e]
where r is proper distance normal to the geodesie,
t is proper time along the geodesic, and K represents
a typical component of the curvature tensor. For
this metric, the ratio of time to space derivatives

(computed from the 7* term only) is

dg/at _ 1 9K

ag/ar K or (85)
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But if we assume that the quadratic terms in (84)
are an adequate approximation to the metric, then
the cubic terms must be negligible in comparison
to the quadratic ones,

r 0K

T oK1

K or (86)

This small quantity is almost the one appearing in
Eq. (85), except a space and time derivative are
interchanged. But as a sort of causality condition,
one expects that

9K /at < oK /or, (87)

for in the contrary case, a disturbance would appear
spontaneously at some point (0K /3t large) without
having arrived there as a wave propagating with
velocity less than ¢ = 1. Thus the quadratic Fermi
approximation (86) together with causality in the
sense of Eq. (87) imply in Eq. (85) the adiabatic
condition

dg/at < dg/or. (88)

These results can be specialized to the Schwarzs-
child case and give some surprises. For this metric
we have from Eq. (78)

K= M/R*. (89)

Using Eqgs. (74) for 9/dt and 9/0x we can test the
causality conditions (87) and find that it reads

£ - [0 29/0-2) <

which is always violated for B < 2M. [Other situa-
tions which violate the causality condition of Eq.
(87) are the expanding-universe cosmological models
where one assumes dK/dr = 0.] A condition which
will ensure the validity of the Fermi expansion is

K@ = Mr/R’ < 1, (91)

and this can be satisfied by taking (r/R) small
enough even if (M/R) is large. Thus the Fermi
expansion is useful even inside the Schwarzschild
“singularity.” The adiabatic eondition computed
from Eqgs. (85) and (74) reads

8g/dt _ 1 by (Z‘_fr_”)*

agror — R =\F7) <L
and is satisfied as a consequence of Eq. (91) which
is a stronger convergence requirement than Eq. (86),

(90)

(92)



