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On the influence of the proper rotation of a centrhbody on the
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In a paper that appeared recent)y ¢ne us computed the field that is found inside of
a rotating hollow sphere approximately in Einstein’s theadrgravitation. That example
seemed to be interesting primarily in the context ohvensg the question of whether the
rotation of distant masses actually produces a gravitdtiteld that is equivalent to a
“centrifugal field” in Einstein’s theory of gravitation.In another respect, it is also
interesting to perform the same easily-performed integraif the field equations for a
rotating solid sphere. As long as one stands on tbis b Newton’s theory, one can
replace the field in the space that is outside of argpdifeconstant mass density (which is
at rest or rotating) with the field of a material pafitequal mass precisely. Moreover, in
Einstein’s theory, the field of a sphere at regtdsivalent to that of a mass poify, (@s
an incompressible fluid, but that will no longer be traerbtating spheres. As we will
show in what follows, additional terms will then appéhat will correspond to the
centrifugal and Coriolis forces. Now, since the planaove in the field of a Sun that
rotates around itself, and the moon moves in the fieddpdanet that rotates around itself,
it does not seem out of the question at the outsetbtairo a new astronomical
confirmation of Einstein’s theory by observing the perttiooes that the additional terms
yield. The numerical computations that are performedavinat follows will produce
perturbations of the orbital elements of the plandist tie beyond the limits of
observability. However, they will yield relativelyrige perturbations for the moons of
Jupiter that might, in fact, lie within the limits ofeasurement.

8§ 1. The computation ofg,, for the field of a rotating solid sphere

Notations:
I the radius of a sphere
M its mass
w its angular velocity

() Hans Thirring, this Zeit10 (1918), 33; referred to 4sc. cit.in what follows.
(®) K. Schwarzschild, Berl. Ber. (1916), 424.
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X,Y,Z the rectangular coordinates of a point in the integmagpace
XY, Z the coordinates of the origin

k the gravitational constant

Jo the naturally-measured spatial density of matter

The computation proceeds in a manner that is completelipgous to what was done
in the paper that was cited in the introduction: Einsteapproximate method of
integration {) is used, except that this time, in the constructiothefenergy tensor for
matter, the velocity of the mass that creates ible is regarded as small enough in
comparison to 1 (viz., the speed of light) that one @&gleat the squares and products of
the velocity components. (As a result, the diffeeehetween the present treatment and
the example that was treated in the previous papertice¢nérifugal force terms, which
are proportional ta, will go away, and the Coriolis terms will remainl) hindsight,
neglecting these terms is justified completely, simowill be very small for the Sun and
all of the planets when it is measured in any systemezsurement for which the speed
of light is 1. For that reason, we will consider tleddf at a great distance from the
boundary surface of the ball in the case that will leated here. If stands for the
distance from the origin to the center of the spherstands for the distance from the
center to the integration element, aRdstands for the distance from the origin to the
integration element then we will develop R/into a series it / r, which we will
truncate with the quadratic terms.

We shall now go on to the approximate solution thatgigen by Einstein, exactly as
we did inloc. cit. (%):

1 if u=v
== 0w+ Yw, 0;,,/:{ H

0 if uzv,
(1) }{UV: V,uv _%Jpvzyc,m )
_ k (T,(X,¥,2, =R
Vi __ETI = dv,.

We then construct the energy tensor for stresssfratter:

y dx, d dx, dx (dx, )’
@ Taw=T"= g, 209X _ po_u_&(_&j
ds ds dx, dx \ ds

with the following expressions for the velocity cooments:

2N =—i% = ir'wsind’sing’,
dt

() A. Einstein, Berl. Ber. (1916), 688.
() The factord,, was obviously omitted from the corresponding eq. (®dncit.
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(3) d_XZ :—iﬂ :—ir'a)sinz9’sin¢',
dx, dt
d_x3' =0

dx,

(r, &, ¢ are the polar coordinates of a point of the ball;tiotatakes place around the
Z-axis), and upon neglecting the termsdn we will get:

0 0 0 ir'wsind sy’
dx, \’ 0 0 0 —ir'wsind cog'
4 Tw= —
@ Tw=p ( dsj 0 0 0 0
ir'wsind' sing' —r 'w sind' cog’ 0 1

According to equations (7) and (8)lo€. cit, we will have to set:

(5) dVo = | ‘jj—x“ r72 dr’sin 9 dd’ dg’.
S

In order to express 1 R in terms of the integration variables, we choose the
coordinate system in such a way that its origin ligh@¥X-plane. With the introduction
of polar coordinates, we will then have:

x=rsingd, y=0, z=rcosd,
and we will get:

R = (r’sin 8’cosd’ —r sind)? + (r 2 sir? I’sirf 9’ + (r’'cosd’ cosd —r cosd)?
_ 2 2r' . . ;. , 2
=r 1—T(S|nz9 cogp' siF+ cof' cas +) .

r
r2

We develop this into a binomial series and truncatiet the second term:

(6) %: E{1+r—(sinz9' cogp' sif+ cof cad
r r
12 12
_ 11 3T (sind cos? s+ co' caB?).
2r 2r

We further denote the expression in the curly ketebyK and write:

_K
t

(62)

p iy
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If we now introduce (4), (5), and (6a) into the lasegfiations (1) then we will get:

. 3
_ K Oy s (27 i (7 d)(4 o
o= A oo oo % s

27T r

3
_ K Py ' vaqi (27 4 07 4 af 0% ol e g1
Via = ETTwOr dr ,[o d¢.[o d (Ej sind’sing’ K,

(7)
1/24—— al powj r’3drj d¢j dﬁ( jsmﬂ cosp' K,

Vie = Voo™ Vas™ Vio = Vi3 = Vaz = Vau= 0.

By neglecting the terms inf and assuming the first viewpoint, the approximation
will yield:

(d—x“j =i [cf, eq. (11)]oc. cit].
ds

If one introduces this value f({rdd—xs“

(6a), into (7) then upon evaluating the integrals, onlkegett

3
j , as well as the expressions Kifrom (6) and

_ K M
Vaa= 2rr
Via =0,
(8)
kM1
=—j ———wlsing,
Vos 2rr 5

Vio = Voo™ Vas= Vio = Vis = Vs = V3, = 0.

According to (1), when one once more introduces nectiar coordinates and uses
the Newtonian gravitational constdot «/ 87z in place of Einstein’s, it will then follow
from this that:

o 2kM
O11=022=033=-1 B

2kM
Qaua=—1+ ,

(9)
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012=013=023=014=034= 0.

If one now makes the special choice of coordinateesysn which the origin falls in
the ZX-plane by means of a rotation of the system then oileuitimately get the
following coefficient matrix:

1 2kM 0 0 i 4kM I_)z/
r 5 r
0 -1- —2kM 0 =i —4;'\/' l—)z(a)
(10) e ' "~ '
0 0 —1—T 0
i4kMI_)£aJ —i4kM|—)2(aJr 0 14 2kM
51 r 5 r r |

§ 2. The equations of motion of a mass-point in the field afrotating solid sphere.

In what follows, the equations of motion of a mpeit in the field of a rotating
solid sphere will be presented, in which we wik@ase that its speed is so small that we
can neglect the squares and products of its vgladmponents in comparison to 1.
Thus, it shall be emphasized from the outset thav@ have to do here is to find the
perturbational terms to the planetary motion thagioate in the rotation of the central
body. In order to obtain a sufficiently exact s@no to the planetary problem in the
sense of Einstein’s theory, one must add the téhatslead to the known motion of the
perihelion to the perturbing terms that were coreguf). However, if the terms that
originate in the proper rotation of the central poalready come from the first
approximation of Einstein’s theory then since tlierementioned perturbation of the
perihelion was first obtained from the second agipnation, it would certainly not be
unreasonable to consider the former and negledattex. The reason that one cannot do
that comes from the following consideration: Anyd#idnal terms that make the further-
developed force expression differ from the Newtoroae will be proportional tavl v,
where v represents the velocity of the planet (moon, jesphile wl represents the
velocity of a point on the equator of a central ypodNow, for the Sun-planet system as
well as for the planet-moon systems that come urdesideration, we will have the
inequality:

(11) V> wl.

Thus, when we include the termsanl v in our calculation, we must also properly
consider any terms in the equations of motionithatlve the squares and products of the

() A. Einstein, Berl. Ber. (1913), pp. 831.
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velocity components of the mass-points. Howevewnefdo that then we can no longer
compute in the first approximation alone, since any termnas dombine with the
Newtonian terms in the second approximation will comparthéo likea/r : 1 (a =
2kM). The square of the velocity of a planet likewise &a order of magnitude af/ r.
The consideration of the quadratic terms in velocity wills logically imply that one
must consider the terms that arise from the seconaxapmation. It will then follow that
the calculations that were employed here will haveneaning in and of themselves, due
to the validity of the inequality (11). However, we age them in practice if we realize
that all of the perturbations that come under consiider&ere are small enough that one
can regard them as linear with respect to each othae Wil then arrive at the desired
result of an orbital calculation that includes all tiglatic effects when one starts with
Einstein’s calculations in the equations of motion thatgave for the precession of the
perihelion of Mercury as a basis and adds the perturbing tidwath are computed in what
follows to them.

As was shown itoc. cit, by the use of the aforementioned omission of temmdstlae
coordinatesg =X, X2 =V, X3 =z, X4 = it, the general equations of motion:

d?x - dXﬂd_)g/
ds’ ' ds ds

will go over into:

d’x _ dx dx dx3)
12 =2| M, —2+T7 +I7 r,.
(12) d< ( dt 247 4t ST 4

From the initial viewpoint of the stationary field apyiroation, the 16 quantitieg’,
that appear here will read like:

_ Jdg,, dg 09,, 09 1 _ 1dg
r,=o, M=o —=w-Sae |l =2 Ze Y84l - -0
14 24~ (ax axl ] 34 (0X3 axl 44 2 axl
r3== % 99, , T2,=0, r2=> % 993 r2,= _E%

X, 0%, 2\ O0x;  0X, 2 0X%,
r3 == % 6914 ’ r:;A: = % 6924 , r§4: 0, M3 = —E%’
ox, 0% ox, 0% 2 0%,
14dg 1dg 109 4
|—4 - _ﬁ’ r4 44 |-4 - 44, r =
14 2 a)q- 247 2 axz 34 2 ax3 44

For our field, which is given by equation (10)isttable will go to:

—i2kM W? X*+y+ 7 _i6kM W’ yz kM x
5r% r r? 52 r r? r’r
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2kM al® x* + y? + 72 . 6kM i xz kM y

+ 2 2 0 + 2 2 2

5r r r 5r rr r<r
(14)

. 6kM wl® yz . 6kM i’ xz kM z
—i == —i == 0 _—=
52 r r? 5r2 r r? r?

_ kM} kM y _ kM_z 0

2 2

r-r r-r

If we substitute these values for thg, in (12) then we will get the desired equations

of motion:

kM al?[4x2+y2+ 22 . 12yz.| kM X
— + =2 7| - —=,

r> r |5 r? 5r% | r?
kKM ad?[4x2+y?+Z . 12z ] kMy
15 y =- — X+—— 7| - —=,
(15) y r? r{S r2 5r2 | r*r
y = KM @127 Xy- yx LUE:

r>r 5r r r2

The last terms on the right-hand side representNeéwtonian force; as explained
above, one must replace them with the force compgsnnat follow from Einstein’s

work with Mercury. The first term

on the right-tetaside is the perturbing term that is of

interest to us, since it arises from the propeation of the central body.

8 3. The computation of the aforementioned perturbations thaare due to the
proper rotation of the central body.

The perturbing terms that appear in equations éit&)seen to be the components of
the perturbing force that originates in the propatation of the central body. We
decompose them into three other mutually-orthogooaiponentss T, W, whereS can
be the radial componeri, the transversal, an¥, the orthogonabne (i.e.the one that is

normal to the planetary orbital plane), and

astronomical nomenclature:

a
e

p=a(l-¢€)
i =0 yor,
Q=0 XOQ

intrmeluthe  following customary

semi-major axis

eccentricity

semi-parameter

inclination

longitude of the ascending node
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@ = brokend XOr1 longitude of periapsis

Lo mean longitude of the epoch
= mean longitude of the planet or satellite at the
timet = 0 (likewise a broken angle that is
measured from th¥-axis)

v=[TOP true anomaly

u=0O0WOP=v+w argument of latitude

U period of the planet or satellite, in days
_2m_ [km

mean daily motion

u a®
C=rv=na ,1-€ twice the areal velocity

Furthermore, in order to abbreviate, we will ské tconstantK that appears in
equations (15) equal tkMwl? / 5.

N

{

=

)

(7=

M andP mean the positions of the periapsides of the pdagued satellites, when
projected from the centé of the central body onto the sphere.

We now have:
X =r (cosu cosQ — sinu sinQ cosi)
y =r (cosu sinQ + sinu cosQ cosi)
Z=Tr Sinu cosi,

[ = P
1+ecosv’

xy— yx = C cosi,
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S= X(cosu cosQ — sinu sinQ cosi) + Y(cosu sinQ + sinu cosQ cosi) + Zsinu sini
T =-X(sinu cosQ + cosu sinQ cosi) + Y(sinu sinQ — cosu cosQ cosi) + Zcosu sini
W= XsinQ sini —Y cosQ sini +Z cosi .

If one inserts the values &, Y, Z that are provided by equations (15) into these
formulas forS T, W then by using the given relations and notations, oreowtiain, after
some lengthy calculations:

_ KCcosi
S= ra
Kr codg KCecosi sinv
(16) T=-——=- =
pr
W= KS:I’]I (2Csinu+rf cosl | = KC?II’]I(I’GSIHV Cosu+25inuj.
r r

The change in the orbital elements under the pmng force is given by the
equations:

da: —2 (Sesin Va TEJ
;

dt n/1-¢€

de +/1-€° ( . T( r+a \B
—= Ssin v+ er——cosV |,
dt na a

ﬂ= lWr cosu,
d C
d_Q: 1 - Wr sinu,
dt Csini

—_— 2 H
d_w: i —-Scosv+ T[l+L sinvj sinv|+ Zsiﬁl—d—Q,
dt nae P 2 dt

) :
dh_ 2 g4 & D5 1@ sirt X2

dt na’ 1+./1-¢? dt 2 dt’

which can be represented in the following form wbae replaces the values (16):
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de_ Kcos . .
—= sinvv,
dt Ca
di_ Ksin cosu [esinvcou+ 2(% e cow )sim ),
dt Cp
d9._ £smu [esinvcosut 2(* e coss)siru ],
dt Cp
- 2 -
dw__ Keosf,, e cosv |V+ Zsiﬁld—Q,
dt Ca e 2 dt
. 2
dy__ 2K 99 (1+ecosv) i —— W, 2t 8 S|ﬁ | 99
dt na“ P 1+./1-¢€? dt dt”

In the spirit of perturbation theory, we consitle orbital element that appears on the
right-hand side with the infinitesimally small factK to be constant and integrate over
just v, while observing thau = v + w — Q. Thus, we compute the first-order

perturbations. If we introdudé, =K / na then we will get:

Aa =0,
Ae= —chﬂ cosv,
J1-¢€°
pi = -Kic0S (cos 21 + 2e cosv co$ u),

2,/ 1-¢€°

K, : . _
W[V 1sin 1 + e (sinv —<sin 1 cosv)],

; 2
Aw=— K, cos L e
(1_62)3/2 e
ALy =-2C (s eging)+— & Am+ AT € sif L 200,

1-¢€° 1+\/1 e’

The interesting result follows from this that therturbation of the semi-major axis
vanishes precisely. Whereas only periodic ternsean Ae andAi, secular terms will
also appear in the remaining elements, namelyesirmt + period:
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K

= (1_ e;)SIZ nt’

(17)

Aw=ALo=- %(1— 3sir? '—] nt
1-¢€) 2

8 4. Numerical results.

Numerical analysis shows that these secular pgetions will remain below the
threshold of observability over the span of a cgnfar the Sun-planets system, since
they will reach a maximum of 0.0Xfor the perihelion of Mercury). The situation is
different for the planet-moons systems: Larger Ipeirs will appear in that case. For the
sake of numerical calculations, it is better tonsfarm formulas (17). We shall use the
following notations:

I Radius of the planet in cm.

r Rotational duration of the planet in days

a Semi-major axis of the satellite orbit in cm.
a “ planetary orbit in cm.
U Period of the satellite in days

Uy “ planet “

J Number of days in a year

£ Velocity of light in cm se¢

The following formula, which results from (17):

T JI?
(18) 2Q Aw=- AL, Y
will give us the aforementioned perturbation of Haellite elements that is due to the
rotation of the planets in arc seconds per cent\ig have set’ =i? = 0 in it, since that
would be permitted to the desired degree of acguiaadhe moons under consideration.
In the spirit of § 2, the perturbations that wdigcussed by Einstein in his research
on Mercury will then remain additive as a contribotthat originates in the direct action
of the planet and a contribution that originatepenturbing force of the Sun. The former
contribution is given by:
5r) @’

24c® U?(1-€?)’

(19) AQ =0, Aw=ALg =

and the latter'} by:

() W. de Sitter, “Planetary motion and the motiontlwé Moon according to Einstein’s theory,”
Amsterdam Procl6 (1916). The orbital plane is subsequently used foKiplane in formula (20). In de
Sitter’s treatment, the formula (38) féwon pp. 379 is missing a factor of 1/4.



(20)

all of which are in arc seconds per century. Both tieemricity and the inclination of
the planetary and satellite orbital planes were négdiein the latter, which is justified by
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NQ =Aw=ALg =

573 a
12¢* U2

the infinitesimal magnitude of these terms, as is shmwhable I:

Table I.
AQ Aw=ALg
Earth moon +1.9 +7.7
Both moons of Mars + 0.7 + 2.7

The values are much smaller for all of the remainiogns.

The perturbations that are due to the proper rotatiomkeoplanets are included in

Table II.
Table II.
Jupiter Saturn
v | I 1 2 3 4 5
AQ +153 | +9 | +2| +20 | +10 | +5 | +2 | +1I'
Aw=ALo | -3 46" | -18' | -4"| -41" | -19" | -10" | -5 | -2

The numbers are less than"0fé&r all of the other satellites.

The largest terms are analogous to the ones th& tel&instein’s precession of the

perihelion of Mercury [formula (19)], as Table Il shaws

Table IlI.
(AQ =0)

Aw= ALy A= ALy
Mars 1 22 Jupiter | 4 28’
2 2 I 124
Saturn 1 5 46" 1 26
2 303 vV 6
3 147 \% 36 37
4 59 Uranus 1 22
5 25 2 10
6 3 3 3
7 2 4 1
10 2 Neptune moon 5

They are less than 0.5or all of the moons that were not entered.
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If we would now wish to add together all three typeseofms in order to obtain the
total relativistic influence then we would have to consither following: The correction
to the Newtonian laws that was treated by Einstein’schty research was caused by a
perturbing force along the radius vector whose compomnetie cited reference were:

2,3 <
:_SnaC_v’ T=W=0:

2c® r?
hence, it is independent of the choice of coore@insystem. In what follows, the
corresponding perturbations [formula (19) and TdbBJecan be referred to an arbitrary
XY-plane. The variations of the elements that actuded in formulas (20) that arise
from the perturbing force of the Sun and that devieom the classical form, as we have
already mentioned, are referred to the orbital plahthe planets, and thus, the numbers
that computed for them in Table I, as well, whileemything in Table II, which includes
the perturbing terms that originate in the rotatidithe plane, is referred to the choice of
coordinate system that was made in the presertresd regarding the equatorial plane
of the central body.

The total relativistic influence is then summadaza Table IV: Only the terms (19)
and (20) appear for the Earth moon and both mobhaos, so the reference plane will
then be the orbital plane of the planets. On therchand, the plane of the central body
in question is used for the satellites of Jupitat §aturn, since once more only the terms
(19) and (20) will appear. The perturbation of theon of Uranus and the moon of
Neptune include only the term (19), so the refeegulanes can be chosen arbitrarily.

Table IV.
AQ Aw=ALg At
Earth moon 2" 8" 13.9
Mars 1. Phobos 1 25 0.5
2. Deimos 1 5 0.4
Jupiter I 9 4 10 29.5
1 2 120 18.9
" 0 26 12.5
v 0 6 7.1
\Y 1 53 3251 1m5.4
Saturn 1. Mimas 20 505 19.2
2. Enceladus 10 244 15.0
3. Thetys 137 12.2
4. Dione 54 9.2

5
2
5. Rhea 1 23 6.9
6. Titan 0
7. Hyperion 0 2 2.7
10. Themis 0
Uranus 1. Ariel 0
0

2. Umbiriel

22 3.7
10 2.7
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3. Titania 0 3 1.5
4. Oberon 0 1 1.0
Neptune moon 0 5 2.1

Let us say this about the column that is labéledThe secular perturbations to the
mean longitude produce a variation in the mean daily motien; in the time that is
elapsed between two events (e.g., the eclipses ofmtdans of Jupiter), which adds a
certain correction to the case in which there areetadivistic influences. This correction
is given in the last column of Table IV for a span oé dwundred years, and is obtained
from the following formula:

At=UALyp.

Summary

The perturbing terms for the planetary and moon orbés ahiginate in Einstein’s
theory of the proper rotation of a central body aralenthan the ones that come from
the second approximation and lead to the precession pétiteslion of Mercury. We do
not encounter these terms for the planetary orbits they must be introduced for the
computation of the orbits of the moons of Jupiter artdira The secular perturbations
that originate upon considering the total relativistic uafice were computed for the
moons of the outer planets. Whether or not theyimadilvidually (e.g., for the fifth moon
of Jupiter) attain a magnitude that is sufficient tonpea proof of the theory for the
perturbations of the moon orbits lies beyond the linafs precision for existing
observations.

Vienna, February 1918, Institute for Theoretical Physi¢heUniversity.
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