

Homework #4

Due March 3, 2026

Problem I

(i) List all the (inequivalent) contractions appearing in

$$\frac{1}{2!} \left(\frac{\lambda}{4!} \right)^2 \int d^4z d^4w \langle \varphi(x) \varphi(y) \varphi^4(z) \varphi^4(w) \rangle$$

that give a non-vanishing contribution to the expectation value. Draw the corresponding diagrams. Write down the mathematical expression corresponding to each diagram in the form of integrals over the Euclidean propagator $D(x)$.

(ii) Consider the perturbative expansion to second order (λ^2) of the correlation functions

$$\langle \varphi(x_1) \varphi(x_2) \rangle \quad \text{and} \quad \langle \varphi(x_1) \varphi(x_2) \varphi(x_3) \varphi(x_4) \rangle$$

in φ^4 theory. Draw all the corresponding diagrams that contribute (i.e., connected diagrams). Indicate their symmetry factors. In the case of $\langle \varphi(x_1) \varphi(x_2) \rangle$ write down the expression corresponding to each Feynman diagram in momentum space. You **do not** need to give the momentum space expression for the diagrams corresponding to the terms in the expansion of $\langle \varphi(x_1) \varphi(x_2) \varphi(x_3) \varphi(x_4) \rangle$ as this would be too much work.

Problem II

The creation of Klein-Gordon particles by a classical source can be modeled by the Hamiltonian:

$$H = H_0 + \int d^3\mathbf{x} (- j(\mathbf{x}, t) \phi(x)),$$

where H_0 is the free Klein-Gordon Hamiltonian, i.e.,

$$H_0 = \frac{1}{2} \int d^3\mathbf{x} \left(\pi^2(\mathbf{x}) + (\nabla \varphi)^2(\mathbf{x}) + m^2 \varphi^2(\mathbf{x}) \right),$$

$\varphi(\mathbf{x})$ is the Klein-Gordon field and $j(\mathbf{x}, t)$ is some given real function of the space-time variables.

(i) Argue that the probability that the source creates no particles is given by:

$$P(0) = |\mathcal{M}|^2 \quad \text{with} \quad \mathcal{M} = \langle 0 | T \left\{ \exp \left(i \int d^4x j(x) \hat{\varphi}(x) \right) \right\} | 0 \rangle .$$

Here $\hat{\varphi}(x)$ is the quantum Klein-Gordon field operator.

(ii) Evaluate $P(0)$ up to order j^2 . Specifically, show that

$$P(0) = 1 - \lambda + O(j^4),$$

and determine λ .

(iii) Represent the term computed in part ii) as a Feynman diagram. Now represent the whole perturbation series for $P(0)$ in terms of Feynman diagrams. Show that this series exponentiates so that it can be summed exactly:

$$P(0) = \exp(-\lambda).$$

(iv) Compute the probability that the source creates one particle of momentum \mathbf{k} . Perform this computation first to $\mathcal{O}(j)$ and then to all orders, using the trick of part iii) to sum the series.

(v) Show that the probability of producing n particles is given by

$$P(n) = \frac{1}{n!} \lambda^n \exp(-\lambda).$$

This is known as a Poisson distribution. Prove that for a Poisson distribution

$$\sum_{n=0}^{\infty} P(n) = 1, \quad \langle N \rangle = \sum_{n=0}^{\infty} n P(n) = \lambda.$$

Compute the mean square fluctuation $\langle (N - \langle N \rangle)^2 \rangle$.

Problem III

In the φ^3 theory

$$\mathcal{A}_I = \frac{\lambda_3}{3!} \int d^4x \varphi^3(x)$$

carry out the Legendre transform of $W[J]$ to the order 4 in J and ϕ . Express $W^{(3)}$ and $W^{(4)}$ in terms of $\Gamma^{(4)}$, $\Gamma^{(3)}$, $\Gamma^{(2)}$. Give diagrammatic representation of your result.