

Homework #3

Due February 20, 2026

Problem I

(I) Consider a long string $q(\tau)$, $\tau \in [0, L]$, subject to the boundary condition

$$q(0) = q_0 .$$

(a) Show that in the limit $L \rightarrow \infty$

$$Z_{\text{conf}} \rightarrow \text{Const} e^{-FL} \Psi_0(q_0) , \quad (\star)$$

where F is the specific (per unit length) free energy of the string, and $\Psi_0(q)$ is the ground-state wave function of the Hamiltonian

$$\hat{H} = \frac{1}{2} \hat{p}^2 + V(\hat{q}) . \quad (\star\star)$$

Here *Const* is independent of q_0 . Observe that the boundary condition at $\tau = L$ is not important for this conclusion.

(b) If L is large but finite, determine the form of the leading correction to (\star) . Assume that the spectrum of \hat{H} is discrete.

(II) For an infinite string, $\tau \in (-\infty, \infty)$, write down the correlation function $\langle q(\tau_1)q(\tau_2) \rangle$ in terms of the eigenvalues E_n and the associated wave functions $\Psi_n(q)$ of the Hamiltonian $(\star\star)$.

Problem II

Consider 4-dimensional hyper-cubic lattice \mathbb{Z}^4 , with the lattice spacing Δ . Compute the lattice propagator as the sum over all lattice path from 0 to x (both being the lattice points $\in \mathbb{Z}^4$, weighted with $e^{-m_0 L}$, where L is the length of the path, $L = \Delta \times (\# \text{ of the lattice links in the path})$). Consider the limit $\Delta \rightarrow 0$. Observe that at fixed m_0 the sum either diverges, or is dominated by the shortest path from 0 to x . Determine how $m_0 = m_0(\Delta)$ should depend on Δ for the long ($L \gg |x|$) path to remain relevant in the limit $\Delta \rightarrow 0$.

Hint: Easy way to evaluate the sum is to write it as

$$\sum_{n=0}^{\infty} e^{-m_0 \Delta n} \sum_{\{\nu_k\}} \prod_{\mu=1}^4 \delta \left(\sum_{k=1}^n \nu_k^\mu - x^\mu / \Delta \right) ,$$

where now ν_k^μ are unit vectors pointing along the lattice links, and $\delta(n)$ is the Kronecker's symbol. Use the representation

$$\delta(n) = \int_{-\pi}^{\pi} \frac{dk}{2\pi} e^{ikn} .$$

Problem III

(a) The Hamiltonian of a free two-dimensional quantum rotator is

$$\hat{H}_0 = -\frac{1}{2I} \frac{d^2}{d\phi^2} \quad (\hbar = 1) ,$$

where $\phi \sim \phi + 2\pi$ is an angular variable. Consider the Euclidean-time Heisenberg operators

$$e^{i\sigma\hat{\phi}(\tau)} = e^{\tau\hat{H}_0} e^{i\sigma\hat{\phi}} e^{-\tau\hat{H}_0} \quad (\sigma = \pm 1) .$$

Compute the two-point thermal correlation function

$$\langle e^{i\sigma_2\phi(\tau_2)} e^{i\sigma_1\phi(\tau_1)} \rangle_\beta \equiv \frac{1}{Z_0} \text{Tr} \left[e^{-\beta\hat{H}_0} e^{i\sigma_2\hat{\phi}(\tau_2)} e^{i\sigma_1\hat{\phi}(\tau_1)} \right] ,$$

where

$$Z_0 = \text{Tr} \left[e^{-\beta\hat{H}_0} \right] .$$

Hint. Use the eigenbasis of \hat{H}_0 (angular momentum states). Note that $e^{\pm i\phi}$ act as ladder operators shifting the quantum number by ± 1 .

(b) Show that the result obtained in part (a) can also be derived using the Euclidean path-integral representation

$$\left\langle \prod_{k=1}^2 e^{i\sigma_k\phi(\tau_k)} \right\rangle_\beta = \frac{\sum_{m=-\infty}^{\infty} \int_{\phi(\tau+\beta)=\phi(\tau)+2\pi m} \mathcal{D}\phi e^{-\mathcal{A}_E[\phi]} \prod_{k=1}^2 e^{i\sigma_k\phi(\tau_k)}}{\sum_{m=-\infty}^{\infty} \int_{\phi(\tau+\beta)=\phi(\tau)+2\pi m} \mathcal{D}\phi e^{-\mathcal{A}_E[\phi]}} ,$$

where

$$\mathcal{A}_E[\phi] = \int_0^\beta d\tau \frac{I}{2} (\partial_\tau \phi)^2 .$$

Generalize this result and compute the n -point correlation function

$$\left\langle \prod_{k=1}^n e^{i\sigma_k\phi(\tau_k)} \right\rangle_\beta .$$

Hint. Decompose the field as $\phi(\tau) = 2\pi m \tau/\beta + X(\tau)$, where $X(\tau)$ is periodic. The sum over winding numbers m plays the role of the discrete angular momentum spectrum in the operator formalism. Charge neutrality, $\sum_k \sigma_k = 0$, is essential. Consider how this condition arises in the path-integral calculation.

(c) Consider the rotator in the presence of a constant external electric field \mathcal{E} . Assume that the rotator has a dipole moment \mathbf{d} , so that the Hamiltonian becomes

$$\hat{H} = -\frac{1}{2I} \frac{d^2}{d\phi^2} - \mathcal{E}d \cos \phi .$$

Using the path-integral representation, develop a weak-field perturbative expansion for the partition function

$$Z = \text{Tr} \left[e^{-\beta \hat{H}} \right].$$

Hint. Expand $\exp \left(2\kappa \int_0^\beta d\tau \cos \phi \right)$ in powers of $\kappa \equiv \frac{1}{2} \mathcal{E}d$. Each order generates insertions of $e^{\pm i\phi(\tau)}$, whose correlators were computed in parts (b).

(d) Recall that the Coulomb potential of a particle with charge e in d -dimensional Euclidean space is defined as the solution of the Laplace equation

$$\Delta \Phi(\mathbf{x}) = -e S_d \delta^{(d)}(\mathbf{x}), \quad S_d = \frac{2\pi^{d/2}}{\Gamma(d/2)}.$$

It then follows that, in the case $d = 1$, the Coulomb potential energy between two particles with charges e_1 and e_2 is

$$U(x) = -e_1 e_2 |x|.$$

Consider a one-dimensional plasma consisting of a mixture of particles with charges $\pm e$. Write down the expression for the grand partition function $\mathcal{Q} = \mathcal{Q}(T, V, \mu)$ of this classical statistical system in the grand canonical ensemble. Using the result above, show that the equation of state has the form

$$\frac{P}{T\rho} = F\left(\frac{T\rho}{P_0}\right) \quad (P_0 \equiv e^2).$$

Here P , T , and ρ denote the pressure, temperature, and particle density, respectively. Determine the function $F(z)$.¹

Hint. Identify the fugacity with the electric-field expansion parameter. Relate \mathcal{Q} to the partition function of the quantum rotator and extract the thermodynamic quantities from the grand potential $\mathcal{G} = -T \log(\mathcal{Q})$.

You will need some facts from the theory of the Mathieu equation,

$$\frac{d^2y}{dx^2} + (a - 2q \cos(2x)) y = 0.$$

In some contexts, the term *Mathieu function* refers to solutions of the Mathieu differential equation for arbitrary values of a and q . When no confusion can arise, some authors use this term more narrowly to denote π - or 2π -periodic solutions, which exist only for special values of a and q .

More precisely, for a given (real) value of q , such periodic solutions exist for an infinite set of values of a , called *characteristic values*. These are conventionally organized into two separate sequences, $a_m(q)$ and $b_{m+1}(q)$, with $m = 0, 1, 2, \dots$. The corresponding functions are denoted by $\text{ce}_m(x, q)$ and $\text{se}_{m+1}(x, q)$, respectively. They are sometimes also referred to as *cosine-elliptic* and *sine-elliptic* functions, or as Mathieu functions of the first kind.

¹The equation of state of the one-dimensional plasma was originally obtained in A. Lenard, *Exact Statistical Mechanics of a One-Dimensional System with Coulomb Forces*, J. Math. Phys. **2**, 682 (1961).

For further details, see, for example, the Wikipedia article on Mathieu functions and sec. 20 in Abramowitz & Stegun). The functions $\text{ce}_m(x, q)$ and $\text{se}_{m+1}(x, q)$, as well as the characteristic values $a_m(q)$ and $b_{m+1}(q)$, are implemented in *Mathematica*. In particular,

$$a_0(q) := \text{MathieuCharacteristicA}[0, q] .$$

(e) Study the low- and high-temperature limits of the one-dimensional plasma. In particular, show that at high temperatures the system is in a plasma phase, while at low temperatures it can be interpreted as a gas of neutral molecules. Verify that there is no phase transition between these two regimes.

Hint. Analyze the limiting values of the function $F(z)$ appearing in the equation of state and show that

$$F(z) \rightarrow \begin{cases} \frac{1}{2} , & z \rightarrow 0 , \\ 1 , & z \rightarrow \infty . \end{cases}$$

This implies that at high temperatures interactions are weak, while at low temperatures opposite charges bind into neutral pairs. Plot $F(z)$ using *Mathematica* and verify that $F(z)$ interpolates smoothly between the two limits.