
Homework #3

Due February 20, 2026

Problem I

(I) Consider a long string q(τ), τ ∈ [0, L], subject to the boundary condition

q(0) = q0 .

(a) Show that in the limit L → ∞
Zconf → Const e−FLΨ0(q0) , (⋆)

where F is the specific (per unit length) free energy of the string, and Ψ0(q) is the
ground–state wave function of the Hamiltonian

Ĥ =
1

2
p̂2 + V (q̂) . (⋆⋆)

Here Const is independent of q0. Observe that the boundary condition at τ = L is not
important for this conclusion.

(b) If L is large but finite, determine the form of the leading correction to (⋆). Assume
that the spectrum of Ĥ is discrete.

(II) For an infinite string, τ ∈ (−∞,∞), write down the correlation function ⟨q(τ1)q(τ2)⟩ in
terms of the eigenvalues En and the associated wave functions Ψn(q) of the Hamiltonian
(⋆⋆).

Problem II

Consider 4-dimensional hyper-cubic lattice Z4, with the lattice spacing ∆. Compute the lattice
propagator as the sum over all lattice path from 0 to x (both being the lattice points ∈ Z4,
weighted with e−m0 L, where L is the length of the path, L = ∆× (# of the lattice links in
the path). Consider the limit ∆ → 0. Observe that at fixed m0 the sum either diverges, or is
dominated by the shortest path from 0 to x. Determine how m0 = m0(∆) should depend on ∆
for the long (L ≫ |x|) path to remain relevant in the limit ∆ → 0.

Hint: Easy way to evaluate the sum is to write it as
∞∑
n=0

e−m0 ∆n
∑
{νk}

4∏
µ=1

δ

( n∑
k=1

νµ
k − xµ/∆

)
,

where now νµ
k are unit vectors pointing along the lattice links, and δ(n) is the Kronecker’s

symbol. Use the representation

δ(n) =

∫ π

−π

dk

2π
eikn .
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Problem III

(a) The Hamiltonian of a free two-dimensional quantum rotator is

Ĥ0 = − 1

2I

d2

dϕ2
(ℏ = 1) ,

where ϕ ∼ ϕ+ 2π is an angular variable. Consider the Euclidean-time Heisenberg opera-
tors

eiσϕ̂(τ) = eτĤ0 eiσϕ̂ e−τĤ0 (σ = ±1) .

Compute the two-point thermal correlation function

⟨eiσ2ϕ(τ2)eiσ1ϕ(τ1)⟩β ≡ 1

Z0

Tr
[
e−βĤ0 eiσ2ϕ̂(τ2) eiσ1ϕ̂(τ1)

]
,

where
Z0 = Tr

[
e−βĤ0

]
.

Hint. Use the eigenbasis of Ĥ0 (angular momentum states). Note that e±iϕ act as ladder
operators shifting the quantum number by ±1.

(b) Show that the result obtained in part (a) can also be derived using the Euclidean path-
integral representation

〈 2∏
k=1

eiσkϕ(τk)

〉
β

=

∞∑
m=−∞

∫
ϕ(τ+β)=ϕ(τ)+2πm

Dϕ e−AE[ϕ]

2∏
k=1

eiσkϕ(τk)

∞∑
m=−∞

∫
ϕ(τ+β)=ϕ(τ)+2πm

Dϕ e−AE[ϕ]

,

where

AE[ϕ] =

∫ β

0

dτ
I

2

(
∂τϕ

)2
.

Generalize this result and compute the n-point correlation function〈 n∏
k=1

eiσkϕ(τk)

〉
β

.

Hint. Decompose the field as ϕ(τ) = 2πmτ/β+X(τ), where X(τ) is periodic. The sum
over winding numbers m plays the role of the discrete angular momentum spectrum in
the operator formalism. Charge neutrality,

∑
k σk = 0, is essential. Consider how this

condition arises in the path-integral calculation.

(c) Consider the rotator in the presence of a constant external electric field E . Assume that
the rotator has a dipole moment d, so that the Hamiltonian becomes

Ĥ = − 1

2I

d2

dϕ2
− Ed cosϕ .
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Using the path-integral representation, develop a weak-field perturbative expansion for
the partition function

Z = Tr
[
e−βĤ

]
.

Hint. Expand exp
(
2κ

∫ β

0
dτ cosϕ

)
in powers of κ ≡ 1

2
Ed. Each order generates insertions

of e±iϕ(τ), whose correlators were computed in parts (b).

(d) Recall that the Coulomb potential of a particle with charge e in d-dimensional Euclidean
space is defined as the solution of the Laplace equation

△Φ(x) = − e Sd δ
(d)(x) , Sd =

2πd/2

Γ(d/2)
.

It then follows that, in the case d = 1, the Coulomb potential energy between two particles
with charges e1 and e2 is

U(x) = − e1e2 |x| .

Consider a one-dimensional plasma consisting of a mixture of particles with charges ±e.
Write down the expression for the grand partition function Q = Q(T, V, µ) of this classical
statistical system in the grand canonical ensemble. Using the result above, show that the
equation of state has the form

P

Tρ
= F

(
Tρ

P0

)
(P0 ≡ e2) .

Here P , T , and ρ denote the pressure, temperature, and particle density, respectively.
Determine the function F (z).1

Hint. Identify the fugacity with the electric-field expansion parameter. Relate Q to the
partition function of the quantum rotator and extract the thermodynamic quantities from
the grand potential G = −T log(Q).

You will need some facts from the theory of the Mathieu equation,

d2y

dx2
+
(
a− 2q cos(2x)

)
y = 0 .

In some contexts, the term Mathieu function refers to solutions of the Mathieu differential
equation for arbitrary values of a and q. When no confusion can arise, some authors use
this term more narrowly to denote π- or 2π-periodic solutions, which exist only for special
values of a and q.

More precisely, for a given (real) value of q, such periodic solutions exist for an infinite
set of values of a, called characteristic values. These are conventionally organized into
two separate sequences, am(q) and bm+1(q), with m = 0, 1, 2, . . . . The corresponding
functions are denoted by cem(x, q) and sem+1(x, q), respectively. They are sometimes also
referred to as cosine–elliptic and sine–elliptic functions, or as Mathieu functions of the
first kind.

1The equation of state of the one-dimensional plasma was originally obtained in A. Lenard, Exact Statistical
Mechanics of a One-Dimensional System with Coulomb Forces, J. Math. Phys. 2, 682 (1961).
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http://www.physics.rutgers.edu/~sergei/616/682_1_online.pdf
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For further details, see, for example, the Wikipedia article on Mathieu functions and sec.
20 in Abramowitz & Stegun). The functions cem(x, q) and sem+1(x, q), as well as the
characteristic values am(q) and bm+1(q), are implemented in Mathematica. In particular,

a0(q) := MathieuCharacteristicA[0, q] .

(e) Study the low- and high-temperature limits of the one-dimensional plasma. In particular,
show that at high temperatures the system is in a plasma phase, while at low temperatures
it can be interpreted as a gas of neutral molecules. Verify that there is no phase transition
between these two regimes.

Hint. Analyze the limiting values of the function F (z) appearing in the equation of state
and show that

F (z) →

{
1
2
, z → 0 ,

1 , z → ∞ .

This implies that at high temperatures interactions are weak, while at low temperatures
opposite charges bind into neutral pairs. Plot F (z) using Mathematica and verify that
F (z) interpolates smoothly between the two limits.
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https://en.wikipedia.org/wiki/Mathieu_function
http://www.convertit.com/Go/ConvertIt/Reference/AMS55.ASP?Res=150&amphi

