

Homework #1

Due January 30, 2026

Problem I

Theorem (Noether): Consider a mechanical system governed by the Lagrangian $L = L(q, \dot{q}, t)$. Suppose we perform a transformation of the co-ordinates q and time t :

$$\begin{aligned} t' &= t + \epsilon X(q, t) \\ q^i(t') &= q^i(t) + \epsilon \Psi^i(q, t) \end{aligned}$$

with ϵ an infinitesimal parameter. If

$$dt L(q, \dot{q}; t) = dt' \left(L(q', \dot{q}'; t') + \epsilon \frac{d}{dt'} F(q', t') \right),$$

then the quantity

$$I = \sum_{i=1}^f \frac{\partial L}{\partial \dot{q}^i} (\dot{q}^i X - \Psi^i) - LX - F$$

is conserved $\dot{I} = 0$.

This problem illustrates the theorem stated above.

- (i) Imagine a classical mechanics particle moving in a gravitational field, which is generated by a homogeneous mass distribution. What are the symmetries and conserved quantities for the following cases?
 - a) The mass is uniformly distributed in the plane $z = 0$
 - b) The mass is uniformly distributed in the half plane $z = 0, y > 0$
 - c) The mass is uniformly distributed along a circular cylinder of infinite length, whose axis extends in the vertical direction
 - d) As in c) but now the cylinder is of finite length
 - e) The mass is uniformly distributed along a cylinder of infinite length, extending in the z direction, whose cross-section is an ellipse
 - f) The mass is in the form of a uniform, infinite wire, which has the geometry of a helical solenoid wound about the z axis

(ii) A one-dimensional mechanical system is governed by the action

$$S = - \int dt \sqrt{1 - \dot{q}^2} .$$

Show that the transformation

$$\begin{aligned} q' &= q \cosh(\theta) + t \sinh(\theta) \\ t' &= q \sinh(\theta) + t \cosh(\theta) \end{aligned}$$

with θ an arbitrary parameter is a symmetry of the action. Using Noether's theorem for a classical mechanics system, find the conserved quantity corresponding to this symmetry.

Problem II

The Klein–Gordon action

$$S = \frac{1}{2} \int d^4x (\partial_\mu \varphi \partial^\mu \varphi - m^2 \varphi^2)$$

is invariant with respect to Lorentz transformations of space–time:

$$x \mapsto \tilde{x}, \quad \tilde{x}^\mu = \Lambda^\mu_\nu x^\nu .$$

- (i) Using Noether's theorem, find the three conserved charges corresponding to the invariance of the model under spatial rotations about the x^1 , x^2 , and x^3 axes.
- (ii) Do the same as in (i) for the three infinitesimal boosts in the x^1 , x^2 , and x^3 directions. Compare the conserved charges obtained in (ii) with the ones you found in Problem 1, part (ii).

Problem III

Consider the Lagrangian density for two real scalar fields φ_j with equal masses,

$$\mathcal{L} = \frac{1}{2} \sum_{s=1}^2 \partial_\mu \varphi_s \partial^\mu \varphi_s - \frac{m^2}{2} \sum_{s=1}^2 \varphi_s^2 .$$

(i) Define the complex field

$$\phi = \frac{1}{\sqrt{2}} (\varphi_1 + i \varphi_2) \quad (i \equiv \sqrt{-1})$$

and rewrite the Lagrangian density in terms of ϕ and its complex conjugate ϕ^* . Find the equations of motion for φ_s , and show that the same results follow if one treats $\mathcal{L}(\phi, \phi^*)$ as if ϕ and ϕ^* were independent dynamical variables.

(ii) Consider the transformation

$$\phi \rightarrow \phi e^{i\alpha}, \quad \phi^* \rightarrow \phi^* e^{-i\alpha}.$$

Show that this is a symmetry, and find the associated Noether current j^μ and the conserved charge Q .

Problem IV

Consider a classical field theory defined in the semi-infinite region

$$x^1, x^2 \in (-\infty, +\infty), \quad x^3 \equiv z \in [0, +\infty),$$

with a boundary at $z = 0$. Suppose the Lagrangian is

$$L = \int_0^\infty dz \int d^2\mathbf{x}^\parallel \left(\frac{1}{2} \dot{\varphi}^2 - \frac{1}{2} (\nabla \varphi)^2 - \frac{m^2}{2} \varphi^2 \right) + \int d^2\mathbf{x}^\parallel V(\varphi_B(t, \mathbf{x}^\parallel)),$$

where $\mathbf{x}^\parallel = (x^1, x^2)$ labels points along the boundary, and

$$\varphi_B(\mathbf{x}^\parallel, t) = \varphi(\mathbf{x}, t) \Big|_{z=0}$$

is the boundary value of φ .

- (i) Find the field equations of motion, including the boundary condition at $z = 0$.
- (ii) Determine which of the quantities E , P^1 , P^2 and P^3 are conserved.
- (iii) Assuming $V(\varphi_B) = M \varphi_B^2$, find the general solution of the field equations.