# Problem set VI

#### Due March 13, 2025

## Problem I

Prolate spheroidal coordinates  $\zeta, \eta, \phi$  are related to Cartesian coordinates x, y, z by

$$\begin{aligned} x &= g \sqrt{(\xi^2 - 1)(1 - \eta^2)} &\cos(\phi) \\ y &= g \sqrt{(\xi^2 - 1)(1 - \eta^2)} &\sin(\phi) \\ z &= g \xi \eta , \end{aligned}$$

where g is a positive constant. The Euclidean space  $\mathbb{E}^3$  without the z-axis corresponds to

$$1 < \xi < \infty$$
,  $-1 < \eta < 1$ ,  $0 \le \phi < 2\pi$ 

- (a) Show that  $(\zeta, \eta, \phi)$  are orthogonal coordinates and calculate the corresponding Lamé coefficients.
- (b) Show that the coordinate surfaces  $\xi = const$  are prolate ellipsoids of revolution with foci at the points (x, y, z) = (0, 0, g) and (x, y, z) = (0, 0, -g). Moreover show that the coordinate surfaces  $\eta = const$  are two-sheeted hyperboloids of revolution with the same foci.



(c) Calculate the capacitance of a metallic prolate ellipsoid of revolution with the principal semiaxes a = b < c:

$$\frac{x^2 + y^2}{a^2} + \frac{z^2}{c^2} = 1 \qquad (a < c) \ .$$

(d) Assuming that  $\varepsilon \equiv 1 - a/c \ll 1$  calculate the lowest oder correction in  $\varepsilon$  to the capacitance of the metallic sphere of radius c. Also consider the opposite limiting case when  $a/c \ll 1$  (a rod).

### Problem II

A particle of charge q and mass m is travelling with velocity  $v \vec{e}_x$  when it encounters a constant electric field  $\vec{E}$  in the y-direction. Find the trajectory y(x), i.e., the shape of the particle's subsequent motion.

## Problem III

A particle of charge q and mass m moves in a circular orbit of radius R in a uniform magnetic field  $\vec{B} = B \vec{e}_z$ .

- (a) Find B in terms of R, q, m and the angular frequency  $\omega$ .
- (b) The speed of the particle is constant since the magnetic field can do no work on the particle. An observer moving at velocity  $\vec{V} = V \vec{e}_x$ , however, does not see the speed being as constant. What is  $U'^0$  measured by this observer?
- (c) Calculate

$$\frac{dU'^0}{ds}$$
 and thus  $\frac{dp'^0}{ds}$ .

Explain how the energy of the particle can change since the magnetic field does no work on it.

## Problem IV

A rocket having initially a total mass  $M_0$  ejects its fuel with constant velocity -u (u > 0) relative to its instantaneous rest frame. In Newtonian mechanics, its velocity V relative to the inertial frame in which it was originally at rest, is related to its mass M(V) by the *Meshchersky* equation

$$\frac{M}{M_0} = \mathrm{e}^{-V/u} \; .$$

- (a) Derive this result.
- (b) Assuming the constraint  $0 < u \leq c$  on the velocity of the ejected fuel, derive the relativistic analogue of the Meshchersky equation. Show that it reduces to the Newtonian result in the appropriate limit.