Problem set "Euclidean tensors"

Due February 10, 2025

Problem I

(i) Calculate the integrals

$$\int_{\mathbb{S}^2} \mathrm{d}\Omega \, n^i n^j \,, \qquad \int_{\mathbb{S}^2} \mathrm{d}\Omega \, n^i n^j n^k \,, \qquad \int_{\mathbb{S}^2} \mathrm{d}\Omega \, n^i n^j n^k n^m$$

over the sphere \mathbb{S}^2 of unit radius. Here (n^1,n^2,n^3) are the components of a unit vector $\vec{n}\in\mathbb{S}^2.$

(ii) Show that $\epsilon_{ijk}\epsilon_{kmn}$ is a rank 4 invariant tensor and find the numerical coefficients in the formula

$$\epsilon_{ijk}\epsilon_{kmn} = A\,\delta_{ij}\delta_{mn} + B\,\delta_{im}\delta_{jn} + C\,\delta_{in}\delta_{jm} \,.$$

(iii) Show that $\epsilon_{ijk}\epsilon_{lmn}$ is a rank 6 invariant tensor and prove the relation

$$\epsilon_{ijk}\epsilon_{lmn} = \det \begin{pmatrix} \delta_{il} & \delta_{im} & \delta_{in} \\ \delta_{jl} & \delta_{jm} & \delta_{jn} \\ \delta_{kl} & \delta_{km} & \delta_{kn} \end{pmatrix}$$
$$= \delta_{il}(\delta_{jm}\delta_{kn} - \delta_{jn}\delta_{km}) - \delta_{im}(\delta_{jl}\delta_{kn} - \delta_{jn}\delta_{kl}) + \delta_{in}(\delta_{jl}\delta_{km} - \delta_{jm}\delta_{kl}) .$$

Problem II

(a) Let $T_{j_1...j_{\ell}}$ be a *totally symmetric* and *traceless* tensor of rank ℓ ,

$$T_{j_1\dots j_\ell} : \quad T_{\dots j_p\dots j_q\dots} = T_{\dots j_q\dots j_p,\dots} \quad \& \quad \delta^{j_p j_q} T_{\dots j_p\dots j_q\dots} = 0 \qquad \forall p,q \qquad (\star)$$

and \vec{n} be a unit vector, $|\vec{n}| = 1$. Assuming that $T_{j_1...j_{\ell}}$ is a constant tensor (i.e., it is the same at any point in space) consider the non-singular function on the sphere

$$\Psi_{\ell}^{(T)}(\vec{n}) = T_{j_1\dots j_{\ell}} n^{j_1} \cdots n^{j_{\ell}}$$

Show that $\Psi_{\ell}^{(T)}(\vec{n})$ satisfies the equation

$$-\nabla_{\vec{n}}^2 \Psi_{\ell}^{(T)}(\vec{n}) = \ell(\ell+1) \ \Psi^{(T)}(\vec{n}) \,,$$

where $\nabla_{\vec{n}}^2$ is the Laplacian on the round sphere (i.e. $\nabla_{\vec{n}}^2$ is the spherical part of the Laplacian in $\mathbb{E}^{3,1}$

- (b) Show that the number of linearly independent components of a totally symmetric and traceless tensor of rank ℓ is equal to $2\ell + 1$. Thus, for given $\ell = 0, 1, 2, ...$ the functions $\Psi_{\ell}^{(T)}(\vec{n})$ form a linear space of dimensions $2\ell + 1$.
- (c) You should know that for given ℓ , the spherical harmonics

$$Y_{\ell,\mathfrak{m}}(\vec{n})$$
 with $\mathfrak{m} = -\ell, -\ell+1, \dots, \ell-1, \ell$

form a linear basis in the space of regular solutions of $\nabla_{\vec{n}}^2 \Psi = -\ell(\ell+1) \Psi$. It follows from (a) and (b) that any spherical harmonic can be written in the form

$$Y_{\ell,\mathfrak{m}}(\vec{n}) = T_{j_1\dots j_\ell}^{(\mathfrak{m})} n^{j_1} \cdots n^{j_\ell} ,$$

where $T_{j_1...j_{\ell}}^{(\mathfrak{m})}$ are a certain set of (complex) numbers satisfying the conditions (*). Find explicit expressions for $T_j^{(\mathfrak{m})}$ ($\mathfrak{m} = -1, 0, 1$) and $T_{jk}^{(\mathfrak{m})}$ ($\mathfrak{m} = -2, -1, 0, 1, 2$).

$$\vec{n} = \begin{pmatrix} n^1 \\ n^2 \\ n^3 \end{pmatrix} = \begin{pmatrix} \sin(\theta)\cos(\varphi) \\ \sin(\theta)\sin(\varphi) \\ \cos(\theta) \end{pmatrix} \in \mathbb{S}^2 ,$$

then

$$\nabla_{\vec{n}}^2 = \frac{1}{\sin(\theta)} \frac{\partial}{\partial \theta} \left(\sin(\theta) \frac{\partial}{\partial \theta} \right) + \frac{1}{\sin^2(\theta)} \frac{\partial^2}{\partial \varphi^2} .$$

¹Recall that if \vec{n} is parameterized by polar and azimuthal angles θ and φ as

Problem III

Consider the 2×2 unitary matrices with unit determinant:

$$\boldsymbol{U}\boldsymbol{U}^{\dagger} = \boldsymbol{I}_{2 \times 2}$$
 & det $\boldsymbol{U} = 1$.

- (a) Show that the set of all such matrices \boldsymbol{U} form a group. The latter is denoted by SU(2).
- (b) Show that any SU(2) matrix can be written in the form

$$oldsymbol{U} = egin{pmatrix}
ho_0 + \mathrm{i}
ho_3 &
ho_2 + \mathrm{i}
ho_1 \ -
ho_2 + \mathrm{i}
ho_1 &
ho_0 - \mathrm{i}
ho_3 \end{pmatrix} \;,$$

where the 4 real numbers $(\rho_0, \rho_1, \rho_2, \rho_3)$ satisfy the condition

$$\rho_0^2 + \rho_1^2 + \rho_2^2 + \rho_2^2 = 1 .$$

In other words there is a one-to-one correspondence between elements of the group SU(2) and points on the 3-dimensional sphere $S^3 \subset \mathbb{R}^4$ of unit radius.²

(c) Show that the matrix exponential

$$\exp\left(\frac{\mathrm{i}}{2}\,\phi^k\sigma_k\right)\qquad (\phi^k=\phi n^k)\;,$$

where σ_k are conventional Pauli matrices:

$$\sigma_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} , \quad \sigma_2 = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} , \quad \sigma_3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

is an SU(2) matrix and express the corresponding set $(\rho_0, \rho_1, \rho_2, \rho_3)$ through the rotational angle $\phi \sim \phi + 2\pi$ and three dimensional unit vector $\vec{n} \in \mathbb{R}^3$: $|\vec{n}| = 1$. Compare the result with the Euler parameters from Problem IV (HW1).

(d) By the similarity transformation any 4×4 matrix $\boldsymbol{U} \otimes \boldsymbol{U}$ can be brought to the block diagonal form:

$$oldsymbol{U} \otimes oldsymbol{U} = oldsymbol{C} \left(egin{array}{cc} 1 & oldsymbol{O} \ O & oldsymbol{S}^{-1} \end{array}
ight) oldsymbol{C}^{-1} \;.$$

Here S is the 3 × 3 matrix of finite rotations from Problem IV (HW1) and the 4 × 4 matrix C is the same for any SU(2) matrix U. Explain why.

(e) Find the explicit form of the 4×4 constant matrix C.

²The sphere S^3 is one the simplest examples of a mathematical object called a *manifold*. Hence the group SU(2) possesses the structure of a manifold. Such groups are called continuous groups or Lie groups. The group SO(3) is another example of a Lie group. It has the structure of the 3-dimensional real projective space \mathbb{RP}^3 . The later can be understood as a 3-dimensional sphere $S^3 \in \mathbb{R}^4$ defined by the equation $\rho_0^2 + \rho_1^2 + \rho_2^2 = 1$ with each pair of points $(\rho_0, \rho_1, \rho_2, \rho_3)$ and $(-\rho_0, -\rho_1, -\rho_2, -\rho_3)$ identified (glued together).