Problem set "Electromagnetics waves"

Due April 17, 2025

Problem I

Consider a plane wave with vector potential $A_{\mu}(x) = a_{\mu}e^{-ik_{\alpha}x^{\alpha}}$ where a_{μ} is a constant 4-vector. Further suppose that $k_{\alpha} = (\omega/c, 0, 0, -k)$ and choose a (non-orthogonal) set of basis vectors for a_{μ} :

$$\begin{aligned} \varepsilon_{\mu}^{(1)} &= (0, 1, 0, 0) , \qquad \varepsilon_{\mu}^{(2)} &= (0, 0, 1, 0) \\ \varepsilon_{\mu}^{(L)} &= \left(\omega/(ck), 0, 0, -1 \right) = \frac{1}{k} k_{\mu} , \qquad \varepsilon_{\mu}^{(B)} = \left(1, 0, 0, \omega/(ck) \right) \qquad (k > 0) \end{aligned}$$

Write

$$a_{\mu} = C_1 \, \varepsilon_{\mu}^{(1)} + C_2 \, \varepsilon_{\mu}^{(2)} + C_L \, \varepsilon_{\mu}^{(L)} + C_B \, \varepsilon_{\mu}^{(B)}$$

- (a) What constraints, if any, does one get on C_1, C_2, C_L, C_B from the Maxwell equation:
 - (1) $\vec{\nabla} \cdot \vec{B} = 0$
 - (2) $\vec{\nabla} \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$
 - (3) $\vec{\nabla} \cdot \vec{E} = 0$
 - (4) $\vec{\nabla} \times \vec{B} = \frac{1}{c^2} \frac{\partial \vec{E}}{\partial t}$?
- (b) Which of the parameters C_1, C_2, C_L, C_B are gauge independent? What constraint does the Lorentz condition impose? The same question for the Coulomb gauge.
- (c) Give the average energy density in terms of C_1, C_2, C_L, C_B after imposing (1-4).

Problem II

Consider a monochromatic EM plane wave that is linearly polarized along the x-axis and propagates in the z-direction with respect to an inertial frame K. What is the polarization measured by an observer K' that moves in the x-direction with a velocity v?

Problem III

Two plane monochromatic linearly polarized EM waves of the same frequency propagate along the z-axis. The first wave is polarized along the x-direction and has amplitude a > 0, and the second is polarized along the y-axis and has amplitude b > 0. The phase of the second wave leads the phase of the first wave by $-\pi < \chi \leq \pi$.¹

- (a) Determine the direction and magnitude of the axes of the polarization ellipse of the resultant wave in terms of a, b and χ in the case $\chi \neq 0, \pi$.
- (b) Find the condition for which the resultant wave is right or left circularly polarized.
- (c) Discuss the case when the phase difference $\chi = 0, \pi$.

Problem IV

- (a) Write down the spatial and temporal dependence of the \vec{E} , \vec{D} , \vec{B} , and \vec{H} fields in an electromagnetic plane wave of angular frequency ω . Specify the magnitude of all vectors, including that of \vec{k} , in terms of ω , $\mu > 0$, $\epsilon > 0$, and the electric field amplitude E_0 . Specify the direction of all vectors, including the \vec{k} -vector. Show explicitly that these fields satisfy Maxwell's equations. Compare the direction of the \vec{k} -vector with that of the Poynting vector. (For simplicity, you may choose the propagation direction and polarization direction to be along two of the Cartesian axes.)
- (b) In what ways are the fields of part (a) modified in a medium in which the dielectric permittivity ϵ is real and negative, while the magnetic permeability μ is real and positive? (This describes e.g., a free electron metal below the plasma frequency.) Determine the instantaneous and time-averaged Poynting vectors. Can electromagnetic waves propagate in such a medium? Is there energy dissipation? Also consider the case $\epsilon > 0$ and $\mu < 0$.
- (c) Repeat part (b) for a material in which both ϵ and μ are real and negative. Can electromagnetic waves propagate in such a medium? Is there energy dissipation? Compared to case (a), what is strangely different here about the \vec{k} -vector and the Poynting vector?
- (d) At the interface between the vacuum and a material of the type described in part (c) (called a "left-handed material"), energy conservation dictates that the normal component of the Poynting vector be continuous across the interface, while phase matching requires that the parallel component of the \vec{k} -vector be continuous across the interface (Snell's law). Consider a plane electromagnetic wave incident from the vacuum onto such an interface at an angle θ with respect to the surface normal. Sketch the \vec{k} -vector (characterizing the motion of the wave fronts) and the Poynting vector (characterizing the energy flow) of the incident, reflected, and transmitted waves, with respect to the interface. Assume $\epsilon = -\epsilon_0$ and $\mu = -\mu_0$.

¹In other words, the electric field of the first and second waves read as $\vec{E}_1 = a \vec{e}_x \cos(kz - \omega t)$ and $\vec{E}_2 = b \vec{e}_y \cos(kz - \omega t + \chi)$, respectively.