Problem set "Space in Classical Physics"

Due January 29, 2024

Problem I

Suppose we are given two different orthogonal coordinate systems that have the same origin. Let \vec{e}_{i} and $\vec{e}_{i}^{\prime}(i=1,2,3)$ be unit vectors along the coordinate axes $O X Y Z$ and $O X^{\prime} Y^{\prime} Z^{\prime}$, respectively, ${ }^{1}$

$$
\vec{e}_{i} \cdot \vec{e}_{j}=\overrightarrow{e_{i}^{\prime}} \cdot \overrightarrow{e_{j}^{\prime}}=\delta_{i j}
$$

Introduce the transformation \hat{S} as a linear operator defined by the conditions,

$$
\vec{e}_{i}^{\prime}=\hat{S} \vec{e}_{i} \quad(i=1,2,3)
$$

Such transformations are known as orthogonal. The vectors \vec{e}_{i}^{\prime} can be linearly expressed in terms of \vec{e}_{i} as

$$
\vec{e}_{i}^{\prime}=\vec{e}_{j} S_{i}^{j}
$$

[^0]Then the position vector would be given by

$$
\vec{r} \equiv\left(\begin{array}{l}
x^{1} \\
x^{2} \\
x^{3}
\end{array}\right)=\sum_{i=1}^{3} x^{i} \vec{e}_{i} \equiv x^{i} \vec{e}_{i}
$$

The same vector can be re-written in the other basis $\vec{r}={x^{\prime}}^{i} \vec{e}_{i}^{\prime}$ with $x^{j}=S_{i}^{j} x^{\prime i}$ or, equivalently, $x^{\prime j}=\Lambda_{i}^{j} x^{i}$ with $\boldsymbol{\Lambda} \equiv \boldsymbol{S}^{-1}=\boldsymbol{S}^{T}$.
where the 3×3 matrix for the operator \hat{S},

$$
\boldsymbol{S}=\left(\begin{array}{ccc}
S_{1}^{1} & S_{2}^{1} & S_{3}^{1} \\
S_{1}^{2} & S_{2}^{2} & S_{3}^{2} \\
S_{1}^{3} & S_{2}^{3} & S_{3}^{3}
\end{array}\right)
$$

satisfies the condition

$$
S^{T} S=1
$$

(the superscript " T " denotes the matrix transposition). For an arbitrary orthogonal transformation one has

$$
(\operatorname{det} \boldsymbol{S})^{2}=1, \quad \text { i.e., } \quad \operatorname{det} \boldsymbol{S}= \pm 1
$$

An orthogonal transformation with determinant +1 is said to be proper.
(a) Show that the linear operator \hat{S} such that

$$
\begin{aligned}
& \overrightarrow{e_{1}^{\prime}}=\hat{S} \vec{e}_{1}=\frac{1}{4} \vec{e}_{1}+\frac{1+2 \sqrt{2}}{4} \vec{e}_{2}-\frac{2-\sqrt{2}}{4} \vec{e}_{3} \\
& \overrightarrow{e_{2}^{\prime}}=\hat{S} \overrightarrow{e_{2}}=\frac{1-2 \sqrt{2}}{4} \overrightarrow{e_{1}}+\frac{1}{4} \vec{e}_{2}+\frac{2+\sqrt{2}}{4} \overrightarrow{e_{3}} \\
& \overrightarrow{e_{3}^{\prime}}=\hat{S} \overrightarrow{e_{3}}=\frac{2+\sqrt{2}}{4} \overrightarrow{e_{1}}-\frac{2-\sqrt{2}}{4} \overrightarrow{e_{2}}+\frac{1}{2} \vec{e}_{3}
\end{aligned}
$$

is a proper orthogonal transformation.
(b) According to Euler's theorem an arbitrary proper orthogonal transformation is a rotation.
Illustrate this statement using the transformation from (a), i.e., determine the unit vector \vec{n} along the corresponding axis of rotation and the rotation angle ϕ.

Problem II

Show that for an arbitrary 3×3 matrix \boldsymbol{A} with entrees A_{i}^{j}, the following relation holds true

$$
\operatorname{det} \boldsymbol{A} \epsilon_{i j k}=A_{i}^{l} A_{j}^{m} A_{k}^{n} \epsilon_{l m n}
$$

Problem III

The cross product of two vectors $\vec{a}=a^{i} \vec{e}_{i}$ and $\vec{b}=b^{i} \vec{e}_{i}$ is defined as

$$
(\vec{a} \times \vec{b})_{i}=\epsilon_{i j k} a^{j} b^{k} .
$$

(a) Show that the 3-component object $c_{i} \equiv(\vec{a} \times \vec{b})_{i}$ transforms under the change of coordinate system $O X Y Z \mapsto O X^{\prime} Y^{\prime} Z^{\prime}$ according to the rule

$$
c_{j}=(+1) S_{i}^{j} c_{i}^{\prime}
$$

for a proper orthogonal transformation and

$$
c_{j}=(-1) S_{i}^{j} c_{i}^{\prime}
$$

for an improper one (here c_{i} and c_{i}^{\prime} are components of the cross product relative to the coordinate systems $O X Y Z$ and $O X^{\prime} Y^{\prime} Z^{\prime}$, respectively. For the definition of the transition matrix \boldsymbol{S} see Problem I).
(b) The cross product can also be introduced geometrically as a vector of magnitude $|\vec{a}||\vec{b}| \sin (\phi)$ with ϕ being the smallest angle between \vec{a} and \vec{b} (i.e. $0 \leq \phi \leq \pi$). It is perpendicular to both \vec{a} and \vec{b} and the direction is found in the following way: If one rotates a right handed screw from \vec{a} into \vec{b} through the smallest possible angle then the screw would travel in the direction of $\vec{a} \times \vec{b}$ (in other words the ordered set of vectors $(\vec{a}, \vec{b}, \vec{a} \times \vec{b})$ is a right-handed triple).

Show that if $\left(\vec{e}_{1}, \vec{e}_{2}, \vec{e}_{3}\right)$ is a right-handed triple of basis vectors then the "algebraic" definition is equivalent to the "geometric" one.

Problem IV

For an arbitrary proper orthogonal transformation express the matrix of finite rotations \boldsymbol{S} in terms of the unit vector along the axis of rotation $\vec{n}=\left(n_{1}, n_{2}, n_{3}\right)$ and the rotation angle ϕ. To simplify the final expression, please use the so-called Euler parameters:

$$
\rho_{0}=\cos (\phi / 2), \quad \rho_{i}=\sin (\phi / 2) n_{i} \quad(i=1,2,3)
$$

satisfying the relation

$$
\rho_{0}^{2}+\rho_{1}^{2}+\rho_{2}^{2}+\rho_{3}^{2}=1
$$

[^0]: ${ }^{1}$ One can think of the unit vectors \vec{e}_{i} as columns

 $$
 \vec{e}_{1}=\left(\begin{array}{l}
 1 \\
 0 \\
 0
 \end{array}\right), \quad \vec{e}_{2}=\left(\begin{array}{l}
 0 \\
 1 \\
 0
 \end{array}\right), \quad \vec{e}_{3}=\left(\begin{array}{l}
 0 \\
 0 \\
 1
 \end{array}\right)
 $$

