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32y +xy + (o — 4y =0
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64. Why is it impossible to expand f(x) = |x| as a power
series that converges in an interval around x = 0? Explain using The-
orem 2.

fmsights and Challenges

o0

= that the coefficients of F(x) = Z apx" are periodic;

n=0

<ome whole number M > 0, we have a4, = ay. Prove

. oaverges absolutely for x| < 1 and that

ap +ayx + ~~-—+—a1v1_1x["1_l
1—xM

IE (x) =
=== hint for Exercise 53.

- o0
simmity of Power Series Let F(x) = Z apx™ be a power
.+ —=dius of convergence R > 0. n=0

= e inequality

X" — y*| < nlx =y 4+ y1*h 10

B G — )+ 1"y eyt

(b) Choose R; with 0 < Ry < R. Show that the infinite series

[o.0]
M = Z 2n|aniRi’ converges. Hint: Show thatnlaniR’f < |ay|x" for
all n stzlffgciently largeif R| <x < R.
(¢) Use Eq. (10) to show that if |x| < Rj and |y| < Ry, then |F(x) —
F(y)l < M|x —y|.
(d) Prove that if |x| < R, then F(x) is continuous at x. Hint: Choose
R such that [x| < Ry < R. Show thatif € > 01is given, then | F (x) —
F(y)| < € forall y such that |[x — y| < §, where § is any positive num-
ber that is less than € /M and R; — |x| (see Figure 6).

L y {
< i <

-R 0 x R R

FIGURE 6 If x > 0, choose § > 0 less than €/M and R} — x.

10.7 Taylor Series

In general,

f(c) = ao,

fx)=  ao+
= a+
') =

2a; +
f"(x)=2-3a3+2-3-4ag(x —2) +3-4-5a5(x —2)* +

fley=a, f"(c) =2a,

In this section we develop general methods for finding power series representations.
Suppose that f(x) is represented by a power series centered at x = ¢ on an interval
(c—R,c+ R) with R > O:

f@ =Y ax—o"=a+ax—c+aE—0c’+
n=0

According to Theorem 2 in Section 10.6, we can compute the derivatives of f(x) by
differentiating the series expansion term by term:

ai(x —c) + az(x—c)z—{— a3(x—c)3+---
2a5(x —¢) + 3a3(x — )2 +  das(x —c)3 + -
2-3a3(x —c¢) + 3'404(X—C)2+4'5a5(x—c)3+---

fO0) =kag+ (23 k+ D)agsi(x =)+

Setting x = ¢ in each of these series, we find that

ey =230, O =k,
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We see that ay, is the kth coefficient of the Taylor polynomial studied in Section 8.+

41

)
HE =
Therefore f(x) = T (x), where T (x) is the Taylor series of f (x) centered at x = =
Vi c 1" c
T(x)= fc)+ fllo)x—c)+ fz(' )(x — )2 %(x — )t
This proves the next theorem.
THEOREM 1 Taylor Series Expansion If f(x) is represented by a power series
tered at ¢ in an interval |x — c¢| < R with R > 0, then that power series is the Tz
series
(o)
e
o= Z - x =0
n=0
In the special case ¢ = 0, T'(x) is also called the Maclaurin series: E
o (n) 0 "0 ) 4) 0 3
fo) = Z——f ,( L D0+ r O Dy L Doy Je A
n! 2! 3!
n=0
B EXAMPLE 1 Find the Taylor series for f(x) = x> centered at ¢ = 1.
general,

Solution The derivatives of f(x) are f'(x) = —=3x~*, f"(x) = (=3)(=4)x—

F®@) = (=D"G)@) - (n+2)x "
Note that (3)(4) - - - (n +2) = 1 (n + 2)!. Therefore,

Noting that (n + 2)! = (n + 2)(n + 1)n!, we write the coefficients of the Taylor
an =

FO1) = (—1)“%@ +2)!
n!

O (D 3@ +2)!
- n! _

The Taylor series for f(x) = x> centered at ¢ = 1 is

_ LDt

2

< %)
ol e
n=0

2

Tl =1—-3(r—1) +60 =1 —10x—1° -
Y(n+1)

=1
Theorem 1 tells us that if we want to represent a function f(x) by a pows
centered at ¢, then the only candidate for the job is the Taylor series:

2 riln)
T(x) = Z ¥ (e)

n=0

n' (x o) C)n

44 1)

|



ercise 92 for an example where a
<ories T (x) converges put does not

2 to f(x)-

JINDER f (x) Is called “infinitely
iable” if £ (x) exists for alln.

nsions were studied throughout
nth and eighteenth centuries
.~ Leibniz, Newton, Maclaurin,

), who discovered the
< of sine and cosine and many
< two centuries earlier.
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However, there is no guarantee that T (x) converges 10 f(x),even if T (x) converges. To
study convergence, W€ consider the kth partial sum, which is the Taylor polynomial of

degree k:

/ (k)
o) oo oo ()

!
k
2 =)

To(x) = f©) + f(O& — s
In Section 8.4, we defined the remainder
Re(x) = f0) — Tex)
Since T (x) is the limit of the partial sums Ti(x), we see that

The Taylor series cOnverges to f(x) if and only ifklim Ri(x) =0.
— 00

There is no general method for determining whether R (x) tends to Zero, but the following
theorem can be applied in some important cases.

THEOREM 2 Let I = (o= RVEH R): where R > 0. Suppose there exists K >0

such that all derivatives of f are bounded by K on I

IfO@| <K forall k>0 and x €I

Then f(x) is represented by its Taylor series inI:

= %o
drealiiciiye
n!

forall xel

c)n

f@y=

n=0

Proof According to the Error Bound for Taylor polynomials (Theorem 2 in Section 8.4),

£ =gl
|Re()l = 1f () = Te@)l = K-exDl

If x eI, then|x — ¢l < R and

Rk-H
|Rp(x)| = Km‘,

We showed in Example 9 of Section 10.1 that R*/ k! tends to zero as k — oo. Therefore,

lim Re(x) =0 for allx € (c— R, ¢+ R), as required. [ |

k— 00

m EXAMPLE 2 Expansions of Sine and Cosine Show that the following Maclaurin €x-
pansions are valid for all x.

&) 2n+1
S i =
sinx = Z( 1) /(Zn = —iX

n=0
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In Example 4, we can also write the

Maclaurin series as

2n x2 ¥4 x6

o
X
— — n e -—_+———+
Cosx_nz_o( D (2n)!_1 ol A1 6l

Solution Recall that the derivatives of f(x) = sinx and their values at x = 0 %3

repeating pattern of period 4:

el @ | L@ £1@, | £96)

sinx | cosx | —sinx | —cosx sin x
0 1 0 -1 0

In other words, the even derivatives are zero and the odd derivatives alternate =
f @n+1)(0) = (—1)". Therefore, the nonzero Taylor coefficients for sin x are

(=1)"
2n + 1)!

For f(x) = cosx, the situation is reversed. The odd derivatives are zero ==&
even derivatives alternate insign: £ (0) = (—=1)" cos 0 = (—1)". Therefore the =
Taylor coefficients for cos x are as, = (—1)"/(2n)!.

We can apply Theorem 2 with K = 1 and any value of R because both sine and
satisfy | f ) (x)| < 1 for all x and n. The conclusion is that the Taylor series conv
f(x) for |x| < R. Since R is arbitrary, the Taylor expansions hold for all x.

Aon+1 =

B EXAMPLE 3 Taylor Expansion of f(x) = ¢* at x = ¢ Find the Taylor series &
filx) =e*=atx = c:

Solution We have ) (c) = e for all x, and thus

¢ e

T =3 %(x —o)

n=0

Because e” is increasing for all R > 0 we have IF® @) < etRforx e c— R
Applying Theorem 2 with K = TR we conclude that T (x) converges to f(x =
x € (¢ — R, ¢+ R). Since R is arbitrary, the Taylor expansion holds for all x. For &
we obtain the standard Maclaurin series

2 x3

X
—1+x+—+§+

Shortcuts to Finding Taylor Series

There are several methods for generating new Taylor series from known ones. 5
all, we can differentiate and integrate Taylor series term by term within its int==
convergence, by Theorem 2 of Section 10.6. We can also multiply two Taylor s
substitute one Taylor series into another (we omit the proofs of these facts).

B EXAMPLE 4 Find the Maclaurin series for f(x) = x2e*.
Solution Multiply the known Maclaurin series for e* by %%
5 % ! pranl 2 repghented
x‘e +x+§+—+—+§+---
g2 146 7 ki

N B T Z
— _x _ J—— — e ———
S TR ]
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