Fig. 11-3 The center of mass {7 of a
rolling wheel moves a distance 5 at veloc-
ity ¥, while the wheel rotates through
angle @ The point P at which the wheel
makes contact with the surface over which
thie wheel rolls also moves a distance 5.

To see how we do this, pretend vou are standing on a sidewalk watching the
bicycle wheel of Fig. 11-3 as it rolls along a street. As shown, vou ses the center of
mass {} of the wheel move forward at constant speed voq. The point P on the
street where the wheel makes contact with the street surface also moves forward
at speed Vg, 50 that P always remains directly below O,

During a time interval £, you see both 0 and P move forward by a distance 5. The
bicvcle nder sees the wheel rotate through an angle # about the center of the wheel,
with the point of the wheel that wes touching the street at the beginning of ¢ moving
through arc length 5. Equation 10-17 relates the arc length 5 to the rotation angle #:

5=6R, (1-1)

where R is the radius of the wheel. The lincar speed v of the center of the
wheel (the center of mass of this uniform wheel) is ds/de. The angular speed @ of
the wheel about its center 1s d@dt. Thus, differentiating Eq. 11-1 with respect to
time (with B held constant) gives us

Voo = @i [smoath rolling motion]). (11-2)

(@) Pore rowmon + [ ¥} Pure ganshsion =

- = - 0
¥ = —Venm * Voqun =

Fig. 11-4 Rolling motion of a wheel as a combination of purely rotational motson and
jpurely translational motion. (@) The purely rotational motion: All points on the wheel move
with the same angular speed o Points on the outside edpe of the wheel all move with the
same linzar speed v = v, The linear velocities ¥ of two such points, at top { T7) and bottom
() of the wheel, are shown () The purely translational motion: All points on the wheel
move to the right with the same linear vebocity ¥, (c) The rolling motion of the wheel is the
combination of (@) and {&).



