Puzzle

In reality, we see a diffraction pattern—a set of interference fringes.

(b) WHAT REALLY HAPPENS:

And, when the slit gets narrower, the central fringe gets WIDER

Thin film interference

Copyright @ 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley.

Q35.6

0

An air wedge separates two glass plates as shown. Light of wavelength λ strikes the upper plate at normal incidence. At a point where the air wedge has thickness t, you will see a bright fringe if t equals

A. $\lambda/2$.

B. $3\lambda/4$.

C. λ.

D. either A. or C.

E. any of A., B., or C.

(a) A convex lens in contact with a glass plane

Copyright @ 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley.

(b) Newton's rings: circular interference fringes

(a) N = 2: two slits produce one minimum between adjacent maxima.

Copyright @ 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley.

(b) N = 8: eight slits produce taller, narrower maxima in the same locations, separated by seven minima.

(c) N = 16: with 16 slits, the maxima are even taller and narrower, with more intervening minima

(c) Fraunhofer (far-field) diffraction

If the screen is distant, the rays to P are approximately parallel.

Copyright @ 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley.

(b) Enlarged view of the top half of the slit

 θ is usually very small, so we can use the approximations $\sin \theta = \theta$ and $\tan \theta = \theta$. Then the condition for a dark band is

$$y_m = x \, \frac{m\lambda}{a}$$

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley.

Light of wavelength λ passes through a single slit of width a. The diffraction pattern is observed on a screen that is very far from from the slit.

Which of the following will give the greatest increase in the angular width of the central diffraction maximum?

- A. Double the slit width a and double the wavelength λ .
- B. Double the slit width a and halve the wavelength λ .
- C. Halve the slit width a and double the wavelength λ .
- D. Halve the slit width a and halve the wavelength λ .

(c) Fraunhofer (far-field) diffraction

If the screen is distant, the rays to P are approximately parallel.

(c) Fraunhofer (far-field) diffraction

If the screen is distant, the rays to *P* are approximately parallel.

(c) Phasor diagram at a point slightly off the center of the pattern; β = total phase difference between the first and last phasors.

From top

(d) As in (c), but in the limit that the slit is subdivided into infinitely many strips

(b)

Copyright @ 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley.