(c) Approximate geometry

... so we can treat the rays as parallel, in which case the path-length difference is simply $r_2 - r_1 = d \sin \theta$.

Copyright @ 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley.

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley.

If I change the slide from 600 lines/mm to 100 lines/mm, how will the spacing of the bright dots change?

- A. They will get a little closer.
- B. They will get a little farther apart
- C. They will get a lot closer
- D. They will get a lot farther apart
- E. The spacing won't change

(a) N = 2: two slits produce one minimum between adjacent maxima.

Copyright @ 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley.

(b) N = 8: eight slits produce taller, narrower maxima in the same locations, separated by seven minima.

(c) N = 16: with 16 slits, the maxima are even taller and narrower, with more intervening minima

(b) The rainbow fringes of an oil slick on water

Copyright @ 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley.

(a) Interference between rays reflected from the two surfaces of a thin film

Light reflected from the upper and lower surfaces of the film comes together in the eye at *P* and undergoes interference.

Some colors interfere constructively and others destructively, creating the color bands we see.

Air bFilm eIndex n t

Copyright @ 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley.

When the glass slab is inserted on the left, how will the point where there is constructive interference of the two pulses change?

- A. It will move to the right.
- B. It will move to the left.
- C. It will stay halfway between the two sources.
- D. We would need more information (including n and thickness of the glass slab) to decide.

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley.

Destructive interference occurs when

- the film is about $\frac{1}{4}\lambda$ thick and
- the light undergoes a phase change at both reflecting surfaces,

Copyright @ 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley.