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Spin dynamics and orbital-antiphase pairing
symmetry in iron-based superconductors
Z. P. Yin*, K. Haule and G. Kotliar

The symmetry of thewavefunction describing the Cooper pairs
is one of the most fundamental quantities in a superconductor,
but for iron-based superconductors it has proved to be
problematic to determine, owing to their complex multi-band
nature1–3. Here we use a first-principles many-body method,
including the two-particle vertex function, to study the spin
dynamics and the superconducting pairing symmetry of a
large number of iron-based compounds. Our results show that
these high-temperature superconductors have both dispersive
high-energy and strong low-energy commensurate or nearly
commensurate spin excitations, which play a dominant role
in Cooper pairing. We find three closely competing types of
pairing symmetries, which take a very simple form in the space
of active iron3dorbitals, anddi�er only in the relativequantum
mechanical phase of the xz, yz and xy orbital components of
the Cooper pair wavefunction. The extensively discussed s+−
symmetry appears when contributions from all orbitals have
equal sign, whereas a novel orbital-antiphase s+− symmetry
emerges when the xy orbital has an opposite sign to the xz
andyzorbitals.Thisorbital-antiphasepairingsymmetryagrees
well with the angular variation of the superconducting gaps in
LiFeAs (refs 4,5).

The spin and the multi-orbital dynamics of iron-based
superconductors are believed to play an essential role in the
mechanism of superconductivity6, but a realistic modelling of
magnetic excitations, and a clear physical picture for their variation
across different families of iron superconductors, is currently
lacking. The Cooper pairs are locked into singlets, but the orbital
structure of the superconducting order parameter can be material
dependent, and its connection to orbital and spin excitations is an
open problem.

The charge dynamics of the iron-based superconductors is
controlled by the strong Hund’s coupling on the iron site7,8,
which requires a theoretical approach that simultaneously treats
the itinerancy of the electrons and Hund’s interaction on an
equal footing. Using non-perturbative many-body method and
ab initio-determined two-particle scattering amplitude (the two-
particle vertex function), we are able to accurately describe the spin
dynamics and symmetry of the superconducting order parameter,
and we will show that Hund’s rule coupling and orbital blocking9
play a crucial role in the superconductivity of iron superconductors.

All iron-based superconductors contain the same basic motif—
layers of iron atoms tetrahedrally coordinated by pnictogen or
chalcogen atoms—but their spin excitation spectra varies greatly
among compounds. In Fig. 1 we plot the dynamic spin structure
factor S(q, ω)=χ ′′(q,ω)/(1−exp(−h̄ω/kBT )) in the paramagnetic
state for several classes of iron compounds along the high-symmetry
momentum path in the first Brillouin zone of the single-iron

unit cell. Here, the momentum transfer is labelled using the
same convention as used in neutron scattering experiments10. We
overlay the neutron scattering data10–13 for some compounds where
experimental results are available, to show the good agreement
between theory and experiment. We computed the magnetic
excitations in the paramagnetic state, at temperatures above the
spin density wave (SDW) transition (even for compounds that have
a magnetically ordered ground state) and compared them with
experimental results in the paramagnetic state.

The bandwidth of the spin excitations, defined as the difference
in the excitation energy at the two momentum points q= (1, 0)
and q= (1, 1), which are the minimum and the maximum of the
dispersion curve respectively, varies substantially throughout Fe
compounds. In strong-coupling theories, this spin bandwidth is
related to the spin-exchange constant J , and is therefore inversely
proportional to the interaction strength (J ∝ t 2/U ). We find
that in the Hund’s metals9, the bandwidth also increases with
decreasing correlation strength, as determined by the degree ofmass
renormalization. The strength of the electronic correlations is tuned
by the iron 3d occupancy14 and the Fe–pnictogen distance9.

The phosphorus compounds (Fig. 1a–c) exhibit the largest
spin-wave bandwidth (of the order of 0.6 eV–0.45 eV), which
is a consequence of their most itinerant nature among these
compounds9. The mass enhancement due to correlations is
increased in arsenides, and even more in the chalcogenides9, hence
the spin-wave bandwidth is progressively reduced to 0.3–0.2 eV in
Fig. 1d–f, and 0.15–0.10 eV in Fig. 1g–h. The intensity of the spin
excitations is proportional to the size of the fluctuating moment
in this energy range, which roughly correlates with the strength
of correlations, hence phosphorus compounds show the weakest
(Max=4) and FeTe shows the strongest (Max=20) intensity.

The low-energy spin excitations are much more sensitive to
the details of both the band structure and the two-particle vertex
function, hence the trend across different compounds can not be
guessed from either the correlation strength or from the band
structure. In Fig. 2 we show S(q, ω) for the same compounds
as in Fig. 1, but we take a different cut in momentum–energy
space, keeping the energy fixed at ω= 5meV, and changing the
momentum in the two-dimensional momentum plane (H ,K ). As
is clear from Figs 1a–c and 2a–c, the low-energy spin excitations
are extremely weak (Max≈ 1) in phosphorus compounds and the
spin excitations at the SDW ordering vector (1, 0) is comparable
to its value at the ferromagnetic ordering vector (0, 0). In strong
contrast, the low-energy spin excitations are very strong in arsenides
(Fig. 2d–g) and are concentrated solely at the commensurate
wavevector (H , K ) = (1, 0). This is the ordering wavevector of
the SDW magnetic state, which is the ground state for these
parent compounds, except the superconducting LiFeAs (TC=18K).
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Figure 1 | Dynamic spin structure factor S(q,ω) in iron pnictides, chalcogenides and MgFeGe. S(q,ω) is plotted along the high-symmetry path (H, K, L= 1)
in the first Brillouin zone of the single-iron unit cell. The intensity varies substantially across these compounds, hence the maximum value of the intensity
was adjusted to emphasize the dispersion most clearly. The maximum value of the intensity in each compound is shown in the top-right corner. The colour
coding corresponds to the theoretical calculations for (a) BaFe2P2 (Tmax

C <2K); (b) LiFeP (TC=6 K); (c) LaFePO (TC=7 K); (d) SrFe2As2 (Tmax
C =37 K);

(e) LaFeAsO (Tmax
C =43 K); (f) BaFe2As2 (Tmax

C =39 K); (g) LiFeAs (TC= 18 K); (h) FeSe (Tmax
C =37 K); (i) MgFeGe (Tmax

C =0 K); (j) FeTe (Tmax
C =0 K);

(k) BaFe1.7Ni0.3As2 (TC<2 K); (l) BaFe1.9Ni0.1As2 (TC=20 K); (m) Ba0.6K0.4Fe2As2 (TC=39 K); (n) KFe2As2 (TC=3.5 K); (o) KFe2Se2. The experimental
data are shown as black dots with error bars in f,g,l and m, digitized from refs 10–13. r.l.u., reciprocal lattice units.

When doped, all compounds in Fig. 2d–f are high-temperature
superconductors (TC ≈ 37 K–39K). Similarly chalcogenide FeSe
(Fig. 1h), which becomes superconducting at TC = 36K under
modest pressure p = 4GPa (ref. 15), has a similar low-energy
spin response to the arsenide superconductors. The pronounced
difference in the low-energy intensity of the spin excitations
between the phosphorus and the arsenide compounds is due both
to the reduced correlation strength in phosphorus compounds9
(Supplementary Methods) and the difference in the orbital content
of the Fermi surface discussed in ref. 16.

MgFeGe is a non-superconducting compound with a band
structure very similar to LiFeAs, and serves as a strong test of
a theoretical description of this class of compounds. Within the
randomphase approximation, the two compounds have very similar
spin excitations, with low-energy maximum intensity at q= (1, 0)
(ref. 17). The inclusion of both strong electronic correlations and the
realistic two-particle vertex function, as done in this study, identifies
clear differences between these two compounds. A broadmaximum
appears in the response of MgFeGe at q=(0,0) (Fig. 2i), hence spin
fluctuations are ferromagnetic, in agreement with calculations of
ref. 18 showing a stable ferromagnetic ground state. Finally, FeTe
also has much broader spin excitations, covering a large part of the
Brillouin zone (see Fig. 2j), and shows two competing excitations
at q= (1, 0) and q= (0.5, 0.5)—the latter corresponding to the
ordering wavevector of the low-temperature antiferromagnetic state
of Fe1.07Te (ref. 19).

The common theme among the high-temperature super-
conductors (Figs 1d–h and 2d–h) is thus the existence of well-
defined high-energy dispersive spin excitations with spin-wave
bandwidths between 0.1 and 0.35 eV and, most importantly, very
well developed commensurate (or nearly commensurate) low-
energy spin excitations at wavevector q= (1, 0), and equivalently
q= (0, 1), consistent with the theory of spin-fluctuation-mediated
superconductivity20. The pnictide parent compounds SrFe2As2,
LaFeAsO and BaFe2As2 have strong low-energy spin excitations
centred exactly at q = (1, 0), whereas in LiFeAs and FeSe the
spin excitations are peaked slightly away from this commensu-
rate wavevector. Consequently, the former three compounds have
an antiferromagnetic ground state, whereas the latter two are
superconducting. In the former, electron or hole doping is needed
to suppress the long-range magnetic order, and to stabilize the
competing superconducting state. In Figs 1f,k–n and 2f,k–n we
illustrate the doping dependence of the spin excitation spectrum on
the examples of electron-doped and hole-doped BaFe2As2—that is,
BaFe2−xNixAs2 and Ba1−xKxFe2As2, respectively. The electron dop-
ing slightly increases the spin-wave bandwidth (comparing Fig. 1f
with k), whereas the hole doping markedly reduces the spin-wave
bandwidth from∼0.2 eV to∼0.05 eV in overdopedKFe2As2 (ref. 13;
Fig. 1n). The low-energy spin excitations in the electron-overdoped
BaFe1.7Ni0.3As2 become very weak and strongly incommensurate13,
with a peak centred at q = (1.0, 0.35) (see Fig. 2k). Similarly,
on the hole-overdoped side in KFe2As2, the low-energy spectrum
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Figure 2 | Dynamic spin structure factor S(q,ω) in iron pnictides, chalcogenides and MgFeGe. S(q,ω) is plotted in the 2D plane (H, K) at constant
ω=5 meV for the same materials as in Fig. 1. The maximum intensity scale for each compound is marked as a number in the top-right corner of each
subplot. The momentum dependence in the kz direction is weak in most compounds, hence we show only the cut at L= 1. In MgFeGe and phosphorus
compounds, we instead show the L=0 plane to emphasize the tendency towards ferromagnetism in these compounds. r.l.u., reciprocal lattice units.
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parameter is not constant on each of the Fermi surfaces in the conventional s+− state. Whereas the diagonal order parameter in the band basis has nodes
on the electron Fermi surfaces in the orbital-antiphase s+− state, the spectral superconducting gap can be nodeless as a result of interband pairing (see
text and Fig. 4).
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Figure 4 | Superconducting pairing symmetry and gap function anisotropy in LiFeAs. a,b, The superconducting gaps on the Fermi surfaces are obtained by
diagonalizing the Bogoliubov quasiparticle Hamiltonian, with the orbital-antiphase s+− (a) and conventional s+− pairing symmetries (b). The red and blue
colours denote the di�erent signs of the superconducting gaps. c–f, Angular dependences of the superconducting gaps for the orbital-antiphase s+− (c,d)
and conventional s+− (e,f) states on the three-hole Fermi surfaces (c,e) and the two electron Fermi surfaces (d,f), respectively. The solid lines correspond
to theoretical results and the symbols denote the experimental measurements from ref. 4. Note that we rescaled the whole gap function such that the
computed superconducting gap on the inner hole pocket matches the experimental value4.

is suppressed (maximum intensity in Fig. 2n is 15, compared
to 100 in the parent compound), and the main excitation peak
moves to an incommensurate wavevector q=(0.75,0) in agreement
with experiments13,21. The optimally doped compounds (Fig. 1l,m)
have high-energy spin excitations very similar to the parent com-
pound, whereas the low-energy excitations are slightly reduced
and broadened in momentum space (Fig. 2l,m), to suppress the
long-range magnetic order of the parent compound. This is very
similar to the spectrum of LiFeAs and FeSe, both of which have
a superconducting ground state. From these plots, we can deduce
that nearly commensurate or commensurate spin excitations at
q= (1, 0), with some finite width in momentum space to reduce
the tendency towards the long-range magnetic order, are favourable
for superconductivity.

Turning to KFe2Se2, Figs 1o and 2o indicate strong low-energy
spin excitations peaked around q= (1,0.4). Vacancies in the K site,
which reduce the effective electron doping, can move the peak
towards q=(1,0) and favour superconductivity. On the other hand,
vacancies in the Fe sites canmove the peak to q=(0.6,0.2) to induce
novel magnetism in K0.8Fe1.6Se2 (ref. 22).

Whereas the dispersion of the dynamic spin structure factor
S(q,ω) and the strength of the low-energy spin excitations correlate
with experimentalTC acrossmany families of iron superconductors,
the superconducting pairing symmetry and the variation of the
superconducting gaps on different Fermi surfaces cannot be
extracted from the spin dynamics alone. To make further progress
on these issues, we computed the complete two-particle scattering
amplitude in the particle–particle channel and determined the
superconducting pairing function (Methods).

In compounds with strong low-energy (nearly) commensurate
spin excitations, such as SrFe2As2, LaFeAsO, BaFe2As2, LiFeAs,
FeSe, BaFe1.9Ni0.1As2 and Ba0.6K0.4Fe2As2, the eigenvalue problem
that determines the pairing function has three, almost degenerate,
leading eigensolutions (with eigenvalues differing by only a few per

cent). The largest eigenvalue of the pairing equations generates a
pole in the particle–particle scattering process, and consequently
determines the wavefunction of the Cooper pair. The corresponding
three eigenvectors, which are proportional to the superconducting
order parameter ∆αβ(k) (α, β are orbital indices of the iron 3d
orbitals), have a surprisingly simple form in the orbital space. The
momentum dependence of the order parameter is very close to
cos(kx)cos(ky) and∆αβ(k) is almost diagonal in the orbital indices.
The numerical solutions can therefore be approximated as

∆αβ(k)≈δαβ∆α cos(kx)cos(ky) (1)

where δαβ is the Kronecker delta function. The dominant pairing
hence occurs between the iron 3d electrons in the same orbital and
on the next-nearest neighbour Fe atoms. The three solutions that
we find, differ in the sign and amplitude of the coefficient ∆α for
different orbitals.

For general orientation, in Fig. 3weplot the diagonal components
of the gap functions in the orbital space (∆αα(k)) in the first
Brillouin zone of the single-iron unit cell. We also plot the diagonal
components of the pairing function in the band basis (∆ii(k)) on the
Fermi surfaces; but notice that the off-diagonal components ∆ij(k)
are equally large.

In these three competing pairing states, each orbital component
∆αα(k) changes sign between the zone centre and k = (π , 0);
hence it has an s+− form6. The three states differ by the
relative phase of individual orbital components, which leads to
different gap structures on the Fermi surfaces and to different
global symmetries. When all three t2g orbitals have the same
phase (∆xy > 0, ∆xz > 0, ∆yz > 0), we recover the conventional s+−
state6. If the xz orbital has the opposite phase to the yz orbital
(∆xz =−∆yz ), the global symmetry is of d-wave type. In this case
the xy orbital shows negligible pairing (∆xy ≈ 0). Finally, we find
a novel type of pairing state in which xz and yz orbitals are in
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phase (∆xz >0, ∆yz >0), but the xy orbital has the opposite phase
(∆xy<0). We call this state the orbital-antiphase s+− state.

To compare with the experimentally determined super-
conducting gaps measured on the Fermi surfaces, we transform
the gap function from the orbital basis (∆αβ(k)) to the band
basis (∆ij(k), i, j are band indices) and diagonalize the Bogoliubov
quasiparticleHamiltonian in themulti-bandHilbert space, to obtain
the superconducting gaps on the Fermi surfaces (Supplementary
Methods). Notice that in the orbital-antiphase s+− state the diagonal
part of the pairing function ∆ii(k) (plotted in Fig. 3) vanishes at
four points on the electron Fermi surface, in close proximity to the
two-band touching point. Nevertheless, the Bogoliubov gap remains
finite because the off-diagonal components of the pairing strength
∆ij(k) in the band basis remain finite; hence, the interband pairing
removes the nodes on the electron pockets (Methods). Unlike in
the weak-coupling theories, these off-diagonal components can
even induce pairing in bands which are near (but do not touch or
cross) the Fermi level.

In Fig. 4 we show the details of the pairing gaps on the two-
dimensional (cut at kz = 0) Fermi surfaces of LiFeAs for both the
conventional s+− and the new orbital-antiphase s+− states. Our
calculations show that the orbital-antiphase s+− state has the largest
pairing strength in LiFeAs. Experimentally, it was found4,5 that the
superconducting gaps have a very unusual variation on the Fermi
surfaces. The superconducting gap is largest on the inner and small-
est on the outer hole Fermi surfaces (Fig. 4c,e). The outer hole pocket
hasmaximal (minimal) gap at ϕ=45◦ (0◦), whereas the two electron
pockets have maximal (minimal) gap at ϕ=0◦ (45◦); see Fig. 4d,f.

The variation of the gaps on the hole Fermi surfaces is reproduced
very well by both the conventional s+− state and the orbital-
antiphase s+− state. The ab initio two-particle vertex function
determined by this method improves on previous random phase
approximation calculations23, where the superconducting gap was
found to be larger on the outer hole Fermi surface as compared to
the inner hole Fermi surface, in disagreement with experiment. We
note that previous functional renormalization group calculations24
predicted the opposite angular variation of the gap on the outer hole
Fermi surface.

The experimentally determined gap variation on the electron
pockets is more consistent with the orbital-antiphase s+− state
having a minimum gap at ϕ=45◦ for both electron pockets. In the
conventional s+− state, the outer electron pocket has a maximum
gap at ϕ=45◦, which was used in ref. 4 as evidence against the spin-
fluctuation mechanism of superconductivity.

Figures 4a,b exhibit a qualitative difference between the orbital-
antiphase s+− and the conventional s+− states: the sign change of the
order parameter between inner and outer hole pockets as well as
between inner and outer electron pockets. Weak coupling theories
with large hybridization between the two electron pockets predicted
the existence of a sign change of the pairing function between these
two pockets25. In our theory, this hybridization is very weak and
plays no role—rather, it is the orbital character that is the decisive
factor in determining the sign change.

Small momentum transfer impurity scattering is pair-breaking
in the orbital-antiphase state, an effect which may have already
been observed in ref. 26 on optimally doped (Ba,K)Fe2As2. The
novel orbital-antiphase s+− state may thus be realized in other
iron-based superconductors.

Methods
Our calculations are performed with an ab initio theoretical method for
correlated electron materials, based on a combination of dynamical mean field
theory (DMFT) and density functional theory (DFT; ref. 27). This computational
method improves on the DFT description of the electronic structure of iron-based
superconductors, predicts the correct magnitude of the ordered magnetic
moments9, and improves the description of electronic spectral functions, Fermi
surfaces9,14 and charge response functions such as the optical conductivity8.

To predict the dynamical magnetic response function across the different
families of iron-based materials, and their impact on the superconducting
pairing, we compute from ab initio both the one-particle Green’s function and the
two-particle scattering amplitude (also called the two-particle vertex function)28.
We studied the paramagnetic phase of all compounds at the same temperature
and used the same Coulomb interactions (Hubbard U and Hund’s coupling J ) for
all materials as in our previous work9, which were determined by the GW
method29. In ref. 9, the nominal valence of Fe, as needed for double counting
correction, was fixed to 3d6 across all Fe compounds. To improve agreement with
experiment, it is better to use the nominal valence of each compound, as has been
done in the present paper—for example, 3d5.5 for Fe in KFe2As2. This results in a
substantially larger mass enhancement (by a factor of two for the xy orbital) in
KFe2As2 compared to the previous study in ref. 9.

To investigate the instability towards superconductivity, we computed, within
the DMFT framework, the complete two-particle scattering amplitude in the
particle–particle channel, which is written in terms of the fully irreducible
two-particle vertex and the reducible two-particle vertices in the particle–hole
channel, and we solved Eliashberg equations in the Bardeen–Cooper–Schrieffer
(BCS) low-energy approximation (Supplementary Methods). In the Eliashberg
equations, the orbital degrees of freedom play the central role, because the
Coulomb interactions, and the two-particle irreducible vertex function in the
particle–hole channel, are large between the iron 3d electrons on the same
iron site.

The leading eigenstates of the pairing interaction, conventional s+−,
orbital-antiphase s+− and the d-wave states, which are described by equation (1),
are almost degenerate. This can be understood if the largest term of the pairing
interaction strength at low energies,

∑
kQαβγ δ 0

αβγ δ

k,k+Qc
†
k,α,↑c

†
−k,β ,↓c−k−Q,γ ,↓ck+Q,δ,↑

(where α,β ,γ and δ are orbital indices, c† and c are the creation and annihilation
operators, respectively), is almost diagonal in orbital space—namely,

0
αβγ δ

k,k+Q≈0(k,Q)δαβδγ δδαγ +·· · (2)

with the dots indicating smaller terms which lift the degeneracy among the three
superconducting solutions. This suggests that superconductivity in different
orbitals is almost decoupled, which is a consequence of the orbital blocking
mechanism9 and Hund’s interaction, acting as an orbital decoupler30.

The subleading terms in equation (2) couple different orbitals, and determine
which superconducting state is realized in a given material. Among the t2g
orbitals, the xy orbital plays a special role—it carries most of the magnetic
moment8, has the largest effective mass9, and with increasing Hund’s coupling it
decouples first from the xz and yz orbital. This decoupling of the xy orbital
allows the sign change in the ∆xy leading to orbital-antiphase superconductivity.
As a consequence, the subleading interaction between electrons on the outer and
the inner (both electron and hole) pocket is repulsive. The Hund’s coupling is
thus not only responsible for the emergence of the large fluctuating moment9 and
sizable correlation strength in Fe-superconductors7, but also the symmetry of the
pairing function.

To understand the results qualitatively, we examine the coupling of the
orbitals in the vertex function using schematic BCS equations. In the
conventional s+− case, the orbitals are very tightly coupled (for example,
0
αβγ δ

k,k+Q≈0(k,Q)δαβδγ δ+·· · ), hence the eigenvector with the largest eigenvalue λ
of the BCS equations, written schematically as λ∆α=

∑
γ
0Nγ∆γ , has equal sign

in all orbitals (∆xz>0, ∆yz>0, ∆xy>0). (Nγ is the partial density of states with γ
character.) In contrast, the BCS equations with interaction from equation (2) will
have the leading term of the form λ∆α=0Nα∆α , which is insensitive to the sign
of pairing ∆α , and hence all three types of pairings (conventional s+−,
orbital-antiphase s+− and d-wave) are exactly degenerate.

Although the structure of the pairing interaction is particularly simple in the
orbital basis, the understanding of the excitation spectra requires the
transformation to the band basis. In the band basis, it is essential to retain the
large off-diagonal matrix elements of ∆ij(k) when computing the Bogoliubov gap.
Near the point of band degeneracy (ε1(k)=ε2(k)=0), the diagonal component of
the pairing function ∆11 changes sign in the orbital-antiphase state; however, the
Bogoliubov gap remains finite and approximately equal to

√
∆2

11+∆
2
12, where

∆12 is the interband pairing amplitude, which removes nodes near such
degeneracies (Supplementary Methods).
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