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Strong correlation effects, such as a marked increase in the
effective mass of the carriers of electricity, recently observed
in the low-density electron gas1 have provided spectacular
support for the existence of a sharp metal–insulator transition
in dilute two-dimensional electron gases2. Here, we show
that strong correlations, normally expected only for narrow
integer-filled bands, can be effectively enhanced even far away
from integer-filling, owing to incipient charge ordering driven
by non-local Coulomb interactions. This general mechanism
is illustrated by solving an extended Hubbard model using
dynamical mean-field theory3. Our findings account for the
key aspects of the experimental phase diagram, and reconcile
the early viewpoints of Wigner and Mott. The interplay
of short-range charge order and local correlations should
result in a three-peak structure in the electron spectral
function, which can be observed in tunnelling and optical
spectroscopy. These experiments will discriminate between the
Wigner–Mott scenario and the alternative perspective that views
disorder as the main driving force for the two-dimensional
metal–insulator transition4.

First indications of a two-dimensional metal–insulator
transition (2D-MIT) have emerged from transport studies, leading
to a great deal of controversy and debate2. Long-held beliefs5 that
even small amounts of impurities can destroy a Fermi liquid at
zero temperature were brought into question, triggering renewed
interest and activity. Careful theoretical work6 suggested that
sufficiently strong interactions may suppress weak localization
tendencies and stabilize the metal at weak disorder. More recent
experiments1,7–11 focused on higher mobility (weaker disorder)
samples, where advances in experimental capabilities enabled
precision measurements of the spin susceptibility χ and the
effective mass m∗. Within experimental resolution, both quantities
seem to diverge at the critical density nc, whereas the Wilson ratio
χ/m∗ = g∗ seems to have a weaker density dependence. These
findings, which have been confirmed by several complementary
experimental methods12–14, are most clearly pronounced in the
cleanest samples, strongly suggesting that interaction effects1—and
not disorder—are the dominant driving force for the 2D-MIT15.

The divergence of the effective mass and spin susceptibility has
been observed in transition-metal oxides near the density-driven
Mott transition16, and in 3He monolayers near solidification17. For
these materials, a description in terms of an almost localized Fermi
liquid and the Brinkman–Rice theory of the Hubbard model has
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Figure 1 Phase diagram for the extended Hubbard model at quarter-filling. The
on-site Coulomb interaction U and the inter-site interaction V are varied on the x and
y axis, respectively. The temperature is held constant at T= 0.01. W is the
half-bandwidth and the energy unit. A typical trajectory relevant for the 2D-MIT is
shown by the arrow. The following phases are found: charge-density-wave metallic
phase (CDW-M), charge-density-wave insulating phase (CDW-I).

been very successful18. The similarity between the observation in
oxides, 3He and 2D electron gases (2DEGs) suggests that we should
think about the physics of the 2D-MIT as yet another example of
the Hubbard–Mott phenomena19,20. Still, the situation relevant to
the 2DEG experiments corresponds to a nearly empty conduction
band—a regime very removed from near-integer-filling where
Mott–Hubbard physics has been successfully applied to interpret
experiments in 3He and transition-metal oxides.

Another aspect of the Hubbard–Mott picture for the 2D-MIT
seems equally troubling. Early theories of the Mott transition, using
the Gutzwiller variational approach18, did predict an enhanced
m∗ but a non-critical g∗, as seen in experiments. However, more
accurate calculations using dynamical mean-field theory3 (DMFT)
established that generally χ should not be expected to diverge at
the transition, but should instead saturate at a finite value χc∼1/J ,
where J is the (finite) superexchange interaction characterizing the
Mott insulating phase of the lattice model in question. In this case,
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Figure 2 Inverse effective mass and spin susceptibility. These quantities are
plotted along the arrow in Fig. 1. Correlation effects are markedly enhanced in the
presence of charge ordering, whereas the system remains metallic. Black circles
correspond to inverse effective mass m/m ∗ and red squares to inverse spin
susceptibility χ−1. The lines are guides to the eye.

g∗ is expected to gradually decrease and vanish as the transition is
approached—in striking contrast to the 2DEG experiments.

Should the 2D-MIT be thought of as a manifestation of
Mott physics—a gradual conversion of the electrons into localized
magnetic moments—or does the explanation require a completely
different physical picture? Here, we provide a simple answer to
this important question, and present detailed and careful model
calculations to support our view. We think it is likely that near
the 2D-MIT the electron gas has short-range crystalline order,
which we model with a tight-binding Hamiltonian. The lattice
sites represent the precursors, in the fluid phase, of vacancies and
interstitials in the Wigner crystal phase. This is a lattice model
at quarter-filling where the area of a cell containing two lattice
sites, corresponds to an area πr2

s a2
B, containing one electron in the

electron gas problem. Here, rs is the adimensional ratio between
Coulomb interaction and Fermi energy, and aB= (4πεh̄2

)/(mbe2)
is the Bohr radius of the system with ε being the electric permittivity
of the gas, h̄ the reduced Plank constant, mb the band mass and e
the electron’s charge. As the system is not close to integer-filling,
the non-local (inter-site) part of the Coulomb interaction cannot
be neglected, as it induces significant charge correlations. These
in turn enhance the role of the short-range (on-site) part of the
Coulomb force, leading to strong correlation physics even far away
from integer-filling. As the ratio of the Coulomb interactions to the
Fermi energy increases, the system develops short-range crystalline
order, which in turn allows the Hubbard interaction to be effective
resulting in the signatures of Mott localization.

We neglect the effect of disorder and we focus on the extended
Hubbard model21 as an effective Hamiltonian to describe the
physics of the 2DEG at low energies. This model contains, in
addition to the usual on-site Hubbard U , a nearest-neighbour
inter-site repulsion V . The spirit of our approach is similar to that
of the almost localized Fermi liquid framework18,22 that successfully
described key aspects of the physics of helium near solidification.

The extended Hubbard model has been studied in detail using
DMFT (ref. 3) where the non-local part of the Coulomb interaction
is treated at the Hartree level. To incorporate the physics of Wigner
crystallization, we consider a bipartite Bethe lattice, at quarter-
filling. We have checked that all of the qualitative features discussed
here do not depend on the chosen lattice. The energy is measured
in units of the half-bandwidth W . U/W and V/W are then
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Figure 3 Evolution of the density of states. Correlations are more important as U
and V increase along the path marked by the arrow in see Fig. 1, and a quasiparticle
peak develops near the Fermi energy.

increasing functions of rs, that is, decreasing functions of the
electronic density, as shown by the arrow in Fig. 1. To connect the
lattice model to the original electron gas model in the continuum,
it is necessary to take W = (πh̄2

)/(mbr2
s a2

B), V = e2/(8πεaBrs) and
U as an increasing function of 1/rs.

The self-consistent equations are:

G−1
A,B(iωn)= iωn+µ−2V nB,A−6A,B(iωn)−GB,A(iωn)/4,

where GA/B are the local Green’s functions, 6A/B the self-energy,
nA,B the occupation, µ the chemical potential and iωn the
Matsubara’s frequencies. To accurately solve the DMFT equations
at low temperatures (T = 0.01), we use the implementation of the
continuous-time quantum Monte Carlo algorithm of ref. 23.

At quarter-filling and when the inter-site interaction V
vanishes, no insulating solution is found even if the interaction
parameter U is arbitrarily large. For V > 0, charge ordering occurs.
The DMFT phase diagram of the system as a function of U and V
is shown in Fig. 1.

The system goes from a weakly correlated Fermi liquid (small
U and V ), to a charge-ordered Fermi liquid, to a Wigner–Mott
insulator. It is well known that broken symmetry phases in
mean-field theory are sometimes indicative of the onset of
pronounced strong short-range order in the 2D system. Therefore,
we cannot address with this approach the possibility of the existence
of a metallic charge-ordered phase in the electron gas24. The dashed
line in Fig. 1 should be thought of as crossover in the 2DEG.
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Figure 4 Behaviour of the Fermi liquid parameter F a
0 versus inverse effective

mass. a, Experimental data showing the correlation between F a
0 and m ∗ . They are

extracted from: ref. 8 (black circles), ref. 7 (black triangles), refs 13,25 (violet
triangles), refs 26,27 (blue diamonds), ref. 28 (pink asterisks). b, Model calculations
of the same quantity. The yellow curve corresponds to the quarter-filled case along
the path marked by the arrow in Fig. 1. The blue curve shows the corresponding
Mott–Hubbard results at half-filling when the on-site U is varying. The Wigner–Mott
model correctly captures the experimental trend.

Remarkably strong correlation effects emerge only in the
intermediate regime, where charge ordering sets in. Increasing the
charge occupation on one of the two sublattices (〈nA〉/ 1) boosts
the effects of the on-site Coulomb repulsion U , and markedly
increases the correlation effects. Hence, charge order leads to a
marked increase of the effective mass and the spin susceptibility,
whereas the system remains metallic (Fig. 2). This behaviour is
strongly reminiscent of that found in the 2DEG experiments, where
the mass enhancement is seen only in a narrow region preceding
the metal-to-insulator transition, but not at high densities, where
m/m∗≈ 1.

The details of the magnetic interactions very close to the
2D-MIT, as well as the different types of magnetic long-range order
in the insulator, depend to some extent on the type of lattice used.
Note however that the enhancement of χ at the Wigner–Mott
transition, which is stronger at quarter-filling than at half-filling for
the same model, is a robust feature.

In the physical picture advocated in this approach, the
enhancement of the effective mass is accompanied by the
development of a quasiparticle peak in the one-particle density of
states, as shown in Fig. 3. The width of the quasiparticle peak is
inversely proportional to m∗.

A stringent test of our scenario is the relation between the Fermi
liquid parameter Fa

0 (g∗= (1+Fa
0 )
−1) and the mass enhancement.

Figure 4 shows the behaviour of Fa
0 versus inverse mass m/m∗. The

data were compiled from experiments carried out on Si-MOSFETs
(refs 7,8,13,25), GaAs HIGFETs (refs 26,27) and AlAs quantum
wells28 using transport measurements, magnetic measurements
or both. The spread between different sets of experimental
data in Fig. 4a may be due to either different experimental
conditions or the use of different probes for extracting the Landau
parameters. Even though there is no experimentally established
‘universal trend’, the model calculations close to the Wigner–Mott
transition at quarter-filling represent a clear improvement over
the Mott–Hubbard picture at half-filling, capturing the qualitative
behaviour of the experimental data.

0
0 0.5

B/W

1.0

10

20

30

(W
/V

)2

CDW-I

CD
W

-M

16

14

12

10

8

n s
 (1

010
 c

m
–

2 )

Insulator

Metal

Metal

0 2 4 6

B (T)

8 10

Figure 5 Magnetic phase diagram. We evolve the phases along the path in Fig. 1
by applying a parallel magnetic field. Field-driven localization is possible only
sufficiently close to the Wigner–Mott transition, within the correlated regime. Inset:
Experimental phase diagram. Error bars represent the standard deviation in the
determination of the critical density. Adapted from refs 29 and 30.

One of the most interesting features of the 2D-MIT is the
marked sensitivity of the correlated Fermi liquid regime to the
Zeeman (spin) splitting introduced by applying a parallel magnetic
field. Indeed, experiments demonstrated that the heavy Fermi
liquid can be effectively destroyed by applying a parallel field,
producing a spin-polarized insulating state above a ‘saturation
field’ B∗(n) of only a few teslas. For a heavy Fermi liquid,
B∗ ∼ 1/m∗ is expected, and indeed experiments and our theory
(see Fig. 5) show that B∗(n) ∼ (n − nc), consistent with a
singularly enhanced m∗ at the transition. Such field-induced
localization is found only in the correlated regime close enough to
the transition.

This behaviour is very hard to understand from the point
of view of a half-filled Hubbard model, because in this case
sufficiently strong field always leads to insulating behaviour. The
field response we find at quarter-filling is markedly different,
as shown in Fig. 5. A field-driven localization transition is still
found, but in contrast to the half-filled case, it is restricted to the
strongly correlated charge-ordered region; the featureless Fermi
liquid remains metallic even on spin polarization. These findings
find favourable agreement with the experimentally established
phase diagram (Fig. 5, inset).

The dependence of the effective mass on the applied magnetic
field is relatively weak, owing to the presence of two competing
effects. On one hand, the magnetic field locks the spin fluctuations,
hence reducing the entropy and the effective mass of the system. On
the other hand, the magnetic field enhances the charge ordering,
which in turn produces a charge-density-wave (CDW) coherence
peak at the band edge, enhancing the density of states.

The current theory considers the on-site Coulomb repulsion at
the single-site DMFT level and the nearest-neighbour repulsion at
the Hartree level. A better treatment, which incorporates dynamical
charge fluctuations, the long-range Coulomb interactions and
short-range correlation effects, is possible using extensions of
DMFT. Furthermore, disorder effects in the strongly correlated
regime need to be addressed. Although these directions remain
interesting avenues for the future, we believe that the essential new
physics at the Wigner–Mott transition is already captured within
the present calculation.
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