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Quantum Monte Carlo

QMC could be called application of Monte Carlo to Quantum many body systems (of
bosons and fermions).

There are very powerful techniques available for bosonic many-body sistems (like spin
systems) but not so much success in fermionic systems. The reason is the so called
fermionic minus sign. This issue of fermionic statistics has not been solved yet and
techniques currently on the market most often “sample” the minus sign and estimate the
error. And the error grows as the temperature is decreased.

Having the above mentioned minus sign problem in mind, QMC is still one of the most
powerful techniques available for many-body systems. There are casses where even for
fermions, the minus-sign problem does not appear. One such case is Hirsch-Fye
algorithm for quantum impurity system which we will implement. Minus sign appears
when more complicated atom or more atoms are considered.
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Varios Quantum Monte Carlo techniques developed over the past with common
denominator: Importance Monte-Carlo sampling.

e Variational Monte Carlo : for finding the ground state of quantum Hamiltonian. The
grund state wave function is parametrized and the Metropolis algorithm is used to
minimized the total energy.

e Diffusion Monte Carlo : Uses diffusion type of equation in combination with random
walk to estimate the ground state wave function of many-body system

e Path integral Monte Carlo and Determinantal Monte Carlo: excited states also
accessible therefore finite temperatures and response functions at finite frequnecies
accessible. The idea is to rewrite the problem in Feyman path integral formulation and
compute the multidimensional integrals using Monte Carlo importance sampling. We
will show the technique on Hirsch-Fye for quantum impurity.

e Diagrammatic and Continuous time quantum Monte Carlo: it samples in
configuration space of Feyman diagrams. The partition function is divided into exactly
solvable part (not necessary quadratic - Wick’s theorem not necessary) and the rest.
This latter part is expanded in Taylor series. The resulting diagrams are sampled by

Monte Carlo importance sampling.
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1 What do we plan to cover in this class?

e Determinantal QMC with example of Hirsch-Fye algorithm.

e Continuous time QMC algorithm (expanding the action in terms of hybridization

strength).
Similarities and difference between the two algorithms

1.1 Determinantal QMC

Determinantal QMC samples in the space of Slater determinants. They are enumerated by
ising-like spin configurations. A configuration in Markov chain is an ising-like spin
configuration, denoted by {¢} in this chapter.

The basic idea of the determinantal QMC is sketched below.

The partition function and average of any physical observable can be expressed (in the

Feyman path integral formulation) by

7 = /D[wTw]e_SO_AS (1)
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(4) = % / Dlgpleple072" @

In Determinantal QMC, Sy is the quadratic part of the action (needs to be exactly solvable
and needs to obey Wick’s theorem!) and AS is the interacting part (usually quartic -
Coulomb interaction).

First, the discrete Hubbard-Stratonovich transformation is used to decouple the quartic term
in the action (Fermions than interact through ising spins rather than directly with
instantenious interaction - analogy with virtual photons and Coulomb interaction).

AS[)] — AS[Y, ¢] 3)

Here ¢ stand for the ising like spin rather than bosonic field.

The advantage of the transformation is that the action is quadratic in fermionic operators.
The price we pay is that the Hilberts space is heavily enlarged, i.e.,

Z= [ Dlo) [ Dltyleso-astee @

We need to sum over all fermionic paths and also over all ising configurations.
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In the next step, we integrate out fermions ) and as a result we get

Z= [ Dlldet G ({0)) 5
4) =5 [ Dllae G (oA} ©

Here {gb} stand for an ising configuration. The interacting problem is cast into a form of
classical problem of ising spins. There are however infinite number of spins. For each small
time interval, we need an ising spin and for each degree of freedom (site index, electron

spin, or band index) we need ising spins.

The Monte Carlo algorithm is used to sample over all possible ising configurations. The
importance sampling is however different than in classical case. The weight in the classical
case is e " PE{¢} where E{¢} is the energy of the ising configuration and and 8 = 1/T.

In determinantal QMC, the weight of the configuration is

det G~ ({¢}).
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1.2 Diagrammatic and Continuous time QMC

Again we start with the Feyman path integral formulation of a general interacting problem

= % / Dlypieple 025 (8)

We expand the action in power series to get the series of Feyman diagrams
T oS ( 1)
7 = Z DyTyple %0 L (AS)* (9)

Here is an important difference between the two QMC algorithms. In this expansion, Sy
does not need to be quadratic in Fermionic operators. It needs to be exactly solvable but
not necessary quadratic (an example is an atom).

(Strictly speaking, if So is not quadratic, the resulting power series is not a series of Feyman
diagrams in terms of (¢¢T> . This series can however still be thought as a series of of Feyman

diagrams in another representation.)
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Monte Carlo sampling is used to sample over all possible diagrams. (there are usually
(2k)! terms at order k because different order of times leads to different diagrams).

e We do not introduce time discretization, hence the name continuous time Monte Carlo.

e We do not increase the Hibert space by ising spins or other Hubbard Stratonovich
fields.

e The Markov chain does not sample over ising configurations but rather over diagrams in

above power series.

The weight that corresponds the the particular diagrams is again proportional to its
contribution to partition function 2, i.e.,

1 k
Weight|Diagram] = /D [1peT]e ™0 ( x ) ~ 2 (AS)” (10)
Here a typical contribution to (AS)"C contains a product of 2k fermionic operators. Each
permutation of these operators leads to a distinct diagram which needs to be sampled with
Monte Carlo importance sampling.
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eterminantal QMC and Hirsch-Fy

Original derivation used Hamitonian formulation rather than path integral approach. We will
follow the original derivation.

The derivation is technically involed but the algorithm is simple to implement.

When necessay, we will think in term of quantum impurity problem, however, this is not
really necessary since the derivation is very general and is (in practically the same form)
used in many determinantal QMC'’s.

The Hamiltonian for quantum impurity is

H = Z eocgacog + Unornoy + Z [Vopcggcpg -+ VO’;C;QJCOJ] - Z epc;fwcpa
S p>00' p>070

(11)
First two terms are onsite atomic terms, last corresponds to the infinite band of electrons
which are not interacting, and the third term couples the atom with the band of electrons.
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Only the second term is non-quadratic - Coulomb repulsion. Withouth this tem, the
problem is exactly solvable.

We will need the solution of the non-interacting (U = 0) case. It is a metter of simple
matrix inversion to show that the impurity Green'’s function in case of U = O is

VeV,
GO:(W_GO_Z Op ¥ PO

W — €
p>0 p

)~ (12)

We proceed with a general derivation of determinantal QMC. First we need to separate
interacting part from non-interacting part of Hamitonian

H=H’+H'

In case of Quantum impurity, the above terms are explicitely

1 :
o — Z(ep + 5p0§U)c;fwcp0 + Z [VopC(JSJCpa + VOpc;f?JcoJ] (13)
po p>0,0
; 1
H = U[nOTn% — §(n0¢ -+ nm)] (14)
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Taking small time step in imaginary time

6—6H _ e—ATHe—ATH o e—ATH, AT — 6

and taking into account the identity
eAT(A—i—B) _ eATAeATB 4+ O(ATQ [A, B]) (15)

we can performed "Trotter-Suzuki decomposion” of trace

L—1 L—1
7 = Tr(e PH) = Tr[H e‘AT(HOJ“HI)] 2 Tr[H e_ATHoe_ATHI] +O(AT?U)
=0 =0

(16)
This is the only approximation in the Determinantal QMC. One can often calculate with few
decreasing A7’s and estimate the limit A7 — 0. Typically, one takes AT < 1/0.25/U
and therefore L > (5+/4U.

The second important step is the discrete Hubbard-Stratonovich decomposition of the
interaction term

e~ ATU[notnoyL— 3 (nor+noy)] — Z As(nor—noy) (17)

s:l:l
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To check that the above decoupling truly works, we can check how the two operators work

on every state in the Hilbert space of the atom

left term  right term

0) 1 1
T> 6ATU/Q %(6)\ ‘|‘6_>\) (18)
¢> 6ATU/2 %(GA +€—A)
o1 1
It follows that e27U/2 = cosh \ and we arrive at
L—1 -
Z = Tr[H e~ ~TH 5L Z e’\sl("OT_"OU] (19)
=0 S0,S1,°°*SL—1
or
1 L 0
Z= o 3 T[] oA O @i ) 20
{s} (=0

—ATHO €>\Sl (nOT—nOU intO

Note that in the last step we combined two exponents e
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because A ~ v AT7U is also small, hence we are making the same Trotter error as before

in discretizing the action.

We mapped the many-body interacting problem to a non-interacting (quadratic in c,cT)
problem. The price we payed is the enlarged Hilbert space with 2L Ising spins.

We can also evaluate the Green’s function or any correlation function in the same way

11 L—1

0
Gij(m,,7,) = — =2 YT | Trei(m, )el(m,) [ [ e 27 HAsttnor=mon ) (1)
{s} [=0

Note that usual definition of the Green'’s function has minus sign
G(1,7") = —(Trc(1)c' (1)) and is different from what QMC community uses. Be
carefull with the minus sign when reading QMC literature.

Kristjan Haule, 2017 —12—



RUtgerS Computational Physics- 2017 QMC

If the temperature is high or U is small, the number of time-slices L can be taken to be
small. In this case, we can evaluate the above summation over Ising-spins exactly and we
do not need Monte-Carlo. This is called Gray code enumeration and is very straighforward
to implement.

The Monte Carlo sampling is used because the phase space of Ising spins 21 is too large
in almost all interesting cases. The Ising configurations {s} = (sq, s1, 82, -+, Sr_1) are
visited with Metropolis or Heat-Bath algorithm. For the problem on the lattice (not impurity
but lattice) the equations and algorithm is the same. Just decoupling of interaction terms

2LN

needs to be performed on each site and the number of configurations is than where

NN is number of interacting sites.

The derivation below is pretty tedious but is just rewriting the non-interacting problem in a
form convenient for use with computer.

At fixed Ising configuration we want to evaluate
Tr[e_ATHg—l_l_)‘ sp—1(not(TL—1)—noy(TL-1)) ... o= ATHg+X s0(nor(70) =04 (70))]

(22)
Note here the order of the terms: The earlier times must appear first due to the time
ordering 1. operator!
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Since we can write H? in the form
0 0
1j)0

the above trace at fixed Ising configuration becomes

L—1 N ) ,
Zigy = Tr[H e TZija Cio (T za]z‘jcja(ﬂ)] (24)
1=0
where \
hisli; = h?j — A_TSZU(Si:j:O (29)

To calculate the above trace, we will first rotate the problem to diagonal form and than
rotate the result back to the original base. Since the Hamiltonian is quadratic (one particle
problem) the diagonal form is obtained by diagonalizing the matrix h (hA = Ae or more
precisely)

hio),(jo) A(jo),a = Eadio) (26)
Here we combined orbital and position index (¢c) to transform into new orbital-position
index .. The tranformation can be performed for each time slice [ to obtain ,,(1). The
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transformation of operator is ¢;, = Za A(w),aca and therefore one has

L—-1
— AT CT Tl )€ o Cao\T
[=0

Since we have non-interacting problem, we can sum for each state o separately

L—1
Z{s} _ HTrO‘[H e—ATEa(l)na(ﬂ)] (28)
@ [=0

where 1Tr, means trace at fixed c. For fermions, n, at fixed o can take only two values 0
or 1 therefore

L-1
Z{s} _ HTrOé[H ATsa(l)na(n) H 1 4 H AT&‘a(l) (29)
o [=0

The last step is discretized version of the more familiar equation

— fIB dT€ana — fIB dTgOé _/8 '
Tr|Tre Jo |=(1+e Jo ) = (1 4 e~ P€=). This is because n,, can be
either zero for all times or 1 for all times, since there is no term in the Hamiltonian that
would change the occupation with time.
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Now we can define diagonal matrix (B})aa = e—27ea(l) and write the above equation in

base-invariant form
Z{S} = Det(l —|_BL_1BL_2"'BO) (30)

where Det is taken over the space and orbital index o. The matrix B can be transformed

back to the original representation of index 7, 7:
B = (ABA") = =270 = e~ ATh? Asiobi=i=0 1 give the result

Z{S} = Det(1+BL_1BL_2-°-BO) (31)

We finally arrived at expression, which is basis independent

1
zZ = > 2—LDet(1 + Br_1Bi_o--- By) (32)
{s}
Bl — 6—A7‘ho 6)\810‘5z‘:j:0 (33)

In the literature, the same derivation is usually based on the identity:

_ TA o "B .~ T, .
TrC_I_ N e Zzg CiArLjCje Zzg CiBZche Zzg CiCZjCj — Det[l _|_ e—Ae—Be—C] (34)
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Starting with Eq. 24, we could take A = A7h(l = 0), B = Ath(l = 1),
C' = Ath(l = 2), etc... and we would then immediately arrive at Eq. 37 by using identity
Eq. 34

We need similar expression for the Green’s function. The derivation goes along the same
lines. Similar to the partition function at fixed Ising configuration Z{S}, we define Green’s

function at fixed Ising configuration 9{8}(w) (o) so that the electron Green’s function is

- D (s} 9is144sy

Green’s function at fixed Ising configuration is

{s}Ising configuration (35)

1 L-1

—ATH 4+ Xs;(noy —no
g(id)a(jo')(Tllale) — ZTI' TTC?JO‘(Tll)C;r'O-(TlQ) H e ATH 4+ As;(noq 1)
i 1=0
(36)

We can again go to the diagonal representation where Hamiltonian is diagonal therefore the
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Green’s function is also diagonal and takes the form

L—1
1 — AT g CT TL)C T
gOCOC(Tl17Tl2) = ZTI“ T’TCOC(Tll)CL(Tlg) H (& A Za a(ea(m)ea(m) (37)
5 1=0

The time ordering is very important here. Suppose [{ > [5 and if we define the following
operator operator U; = e~ ATea()na (1) e have

1
Joa(Tiy 5 Tiy) = ZTT[UL—l - Upyca(11,)Ut—1 -+ - Upy el (11,)Usy -1 -+ Ug]
(38)
Cyclic permutation of the trace gives
1
gOéOé(lele) — ?}TY[UZQ—ZL T UOUL—l T Ullca(Tll)Ull—l T UZQCL(TZQ)]
(39)

Since we have one particle problem, we need to consider only two possibilities: state « is
either empty or occupied. The only nonzero contribution is obviously when « is empty

1
Jaa Ty T1y) = Z{}<O|Ul2— - UoUp—1 - Uy oy ) Uiy -1 -+ Upyel (11,)]0)

(40)
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which gives

1

gOéOé(Tllleg) — ?}[éll—l v ‘EZQ] —

Ell_l . §l2
(14 Br—1---By)

In the original non-diagonal representation, Green’s function takes the form

l1 >l By, _1-B,[1+Br_ 1+ Bg]™*
(711, Ti5) = o, @
i <ly —By,—1--+ByBp_1---Bi,[14+Bp_1---By]

Note here the minus sign in the second line, which comes from the fermionic commutation
rules.
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This complicated matrix can be written in much more elegant way as an inversion of a large
matrix of size L * N X L *x IN, where L is number of times slices and [V is the number of
orbitals times number of sites. We combined position-orbital index with spin index for
convenience to have one inex (¢0’). However, all matrices g, B,... are digonal in spin index
therefore we can work with smaller matrix of size (position*orbial) and not
(position*orbital*spin) and use B instead of B.

Matrix gy, 1, is

—1
(1 0 - 0 By )
By 1 .- 0
0 —B; 1
g = (43)
1 0

\ - 1 )

and, at the same time we also have

Z{S} = Det[g_l] (44)
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Perhaps the best way to check the above identity is to examine a few lowest order terms.
The non-trivial 3 X 3 matrix gives

-1 _ _ _

1 0 By (1+ B2B1Bp) 1 —ByB1(1+ BgByB1) ! —By(1+ B1BgBg) ™!

—Bo 1 0 = Bo(1+ ByB1Bg) ™! (14 BgBgB1) ! —BoB2(1+ B1BgBg) ™
0 —B1 B1Bg(1+ ByByBg)~ ! Bi(1+4 BgBgBy) ! (14 B1BgB2) !

(45)
which shows the right strucuture for 3-time slices. Note that B’s are itself matrices in
orbital, spin, (position) indices. Determinant of the above 3 X 3 matrix is
Det|1 + Bs B1 By| which is compatible with the second identity.
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Let’s repeat the results obtained so far

Yoy Detlgg

G = . (46)
Z{s} Det[g~"]
[ 1 0 0 Br_i )
— By 1 0
1 0 —-B; 1
g = (47)
1 0
K P - S 1 )
Bl _ e—AThoe)\slocSi:j:o (48)

These are general results of determinantal QMC, and for general case we just do not have
5i:j:0 in the last term, but rather such decoupled term exists for each site.
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Hirsch-Fye

In the specific case of a quantum impurity, we can make a few more steps. The size of the
matrix g is now L x N X L x N where L is the number of time slices and [V is the
proportioanl to the number of sites (including the non-interacting conduction band sites). As
usual, it is possible to integrate out the degrees of freedom that correspond to the
non-interacting part of the system (the conduction band) and work with the interacting sites
only. The great advantage is that the conduction band can then be treated as an infinite
band (with infinite number of sites).

Hirsch and Fye pointed out that there exists something like a Dyson equation which
connects Green’s functions of different Ising configurations.

We defined matrix B above as

(G—A’Tho) )\810'57;23':0

ij €

(Bi)(io).(jo) =
It is convenient to define another matrix of size /N X NN, which is identity everywhere
except on impurity site = = 7 = 0 where it is diagonal and takes the form e*s19  Let's call

this matrix eV

(") (i), (jo) = 04, + Oimjmo (€™ — 1) (49)
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Matrix B; therefore becomes
0
B, = e 2T Vi (50)

Let's construct L * N x L = N matrix " and multiply it with g~

1 0 0 B
B L—1 e_VO 0 0
— 1 0
00 5 ) 0 e— V1 0
g te™V = -l 0 0 e— V2 0 0
X ) )
0 0 0 0 e~ VL-1
—By _o 1
G_VO 0 0 BL 16_ L—-1
—Boe_VO e_Vl 0
0 —Ble_vl e V2
e_VL_2 0
By _ge VL-2 e VL—1

It is important to realize that the off-diagonal elements of the resulting matrix do not

0 0
depend on Ising spin configuration since Bje ™Vt = ¢~ 27h DeVie=Vi = g=ATh (1),

It is than simple to see that the following matrix equation is valid
_ _ _1 _ / _ . /
g 16 Vv g/ e Vi e vV e |4 (53)

where (¢g,V) and (¢’,V’) correspond to any two (different) Ising configurations.
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The above equation (53) is important because: if we know g for certain configuration and
we obtain by Markov chain simulation new V', we can get ¢’. The big advantage of using
equation (53) is that one can isolate the impurity site and monitor what happens with the
impurity site only. One can thus avoid using large IV x L X N x L matrices, instead one
can manipulate L X L matrices.

It is instructive to rewrite the above equation in the form

g gl =1 —gHa =€) (54)

or

V' -V

g —g=(g9-1) (e - 1)g". (55)
is unity for each but impurity site. The term (eV/_V — 1) therefore
vanishes for each but impurity site. The change of the green’s function on the impurity site

As we noted before ¢V’

can hence be computed without the knowledge of non-impurity sites, i.e.,

(9")o0 — (9)00 = ((9)00 — 1)(6‘//_‘/ — 1)00(9")oo (56)

It is therefore sufficient to monitor the impurity only in the Markov chain simulation.
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Slightly different form of Eq. (85) is actually used in computation

with

The important point is that
Det(g) = Det(g’)Det(.A)

Det(g' ") = Det(g~")Det(A)

QMC

(57)

(98)

with Det(.A) = Det(.Apg) X 1, where 00 means the impurity site. Note that .4 is not just

unity outside the impurity, as it takes the form

‘//—-V/ _ 1)

-AiO = —gio(e 00

(59)

for 7 # 0. However, Agp; = 0 for j # 0, hence the determinant expansion by minors gives

Aoo — A100 + A00 + - - - = Ago

Kristjan Haule, 2017
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The CT-auxiliary field MC

While Hirsch-Fye algorithm is not much used anymore in practice, its close cousin (CTAUX)
is used a lot for solving large cluster problems when Coulomb repulsion is very simple (only
Hubbard U or Slater-F).

The CTAUX arrives at almost identical equations as in the case of determinantal MC,
however, it has continuous time evolution, which makes it free from time-discretization
systematic error.

We will derive this algorithm with the action formulation, which is a faster way of getting to
the same equations. We write

B B
= T T’ (-G T — e, (77
S—chlcig;g<nca< Neo(7) + K
b K

n(7) +ny(7)
9

+ [ 5+ Ummm) - U | (80

&

The partition function is then

_ K [P Up e +n
_ T So _ _ - +
7 = /D[c cle””° exp (5 /0 dr|1 e (n4ny 5 )]) (61)
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Now we expand it in powers of the interaction AS, to obtain

o= frea S8 Lo [ o

k=0

Up na (1) + ny (7
. Hlu =y () - MO
1=
The crucial step is now the discrete Hubbard-Stratonovich transformation, which is slightly

different than in the usual determinantal MC

L= %U (m(ﬂm(ﬂ il )_2“” ) 5 D et (63)

s:l:l

with cosh A = 1 + g—%
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With this transformation, we can rewrite the action as

T Si \F 1 B 8 B
Z:/Dcce_o (—) —/ d7'1/ dTQ"'/ dTy,
e 2 \55) w ), T, ;
k
<[] D erstmimmnitnd (64)

1=1 Si=:|:1

or

2= (B A [(on [Can [(miitohe i 9

kIO {S}k

where

k

Zil{s}e, {T}hi] = / Dl cJe 502z () ()= (ri) (66)

Now we recognize that Zx [{ s}, {7} ] corresponds exactly to our determinantal MC
action (see Eq.[20), in which the time discretization was chosen to be fixed, with £ equal
time slices. We then recognize that our previous derivation can be used to compute the
partition function.
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More precisely, the partition function evaluates to
Zk:[{s}ka{’r}k] = Det(l + B Br_1 Bl) (67)
with

Bl — e—ATlhO—I—ASlO'Z(Si:j:() (68)

Compare this to Egs. 32 and 33.

While the similarity between this expression and determinantal MC is close, the simulation
is quite different. In CTAUX one needs to allow for variable number of time slices, and
arbitrary distance between these times. This is the essence of continuous time Monte
Carlo, namely, that the time discretization is not being fixed at the outset, but one allows for
an arbitrary configuration of times being sampled.
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Lets go back to Hirsh-Fye and summarize the equations we derived

2 qs) Det[g; '|Det[g} ]go

o - . (69)
Z{s} Det[gT 1]Det[g¢ ]

Ag' =g (70)

A=1+1=¢g)" "V =1) (71)

eVt = Mo (72)

The non-interacting Green’s function GY obtained from the original impurity Hamiltonian by

swithching off the interaction (U = 0) was written in Eq. (12) and is
VeV,

0 _ 0p VPO \ 1
G" = (w — € — Zp>0 w]iez; )
We can get Green’s function ¢ at any Ising conflguratlon (50,81, ,81,—1) from GV
using Eq. (67) since GY corresponds to the case eV =1.

Note that all equations above are written for impurity site only and g, are just matrices in
time index (not in site index). A and V' are also matrices in imaginary time.

We will use two types of updates for Green’s function g: single-spin flip and clean update.

If Ising configurations {s}’ and {s} differ in only one spin (lets call it s,,), g’ can be
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obtained from g withouth the inversion of the L X L matrix A.

/
Matrix eV’ -V IS

orinshort (¢V' =V — 1), = ad;—y—p With @ = (er(sp'=sp) _ 1)

From Eq. 62, we can obtain A which is A;;r = 050 + a (01 — gip)O17p-

matrix A can be explicitely writte down and takes the form

a
—1
(A )y =0 + 1 1 (91p — O1p)017p
+ a,( — gpp)
In matrix form it takes the form
0 90p 0 0
0 91p 0 0
A=1TI-a 0 0 oA~y : 0
0 gpp — 1 0 14+ a(l — gpp) 0
0 . 0 0
0 9L—1p 0 0

QMC

The inversion of

(74)
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This identity can be derived from a more general ShermanMorrison formula, which reads

Ay vl A1
A+uxol)yt=A4"1— 76
(A+usvr) 1+o0l-A-1.uy (76)
If we take A = I, u; = a(d;, — gip) and v} = J;, we arrive at the Eq. 65
The update operation for single spin flip is therefore ¢’ = A_lg:
a
glllgl — glllg + 1 _|_ Cl(l . gpp) (gllp o 5l1p)gpl2 (77)

This is simple rank-1 update implemented in BLAS routine "dgerr” (A = A + ax * y') and
the QMC code can be made very efficient just by using this blas routine. No further
optimization of the QMC code is necessary in this case, since most of the time is spend in
blas routine and therefore one gets theoretical performance (number of operations equal to
the number of clock ticks of the processor).

We will also need the determinant of A since this will give us the transition probability. It is
simple to see that

DetA =1+ (1 — gpp)a (78)

Due to numerical roundoff error, it is advisable to make a "clean” update from time to time.
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It this case we just use Egs. (61),(62) to get from non-interacting G to g of the current

Ising configuration
A=1+(1-G"E =1) (79)

or Al1l2 — 5l1l2(1 + (GAGSZQ - 1)) o G?1l2 (GAGSZQ - 1)
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How is Monte Carlo sampling used in this approach?

From Eq.[60, we see that (G is weighted average of g over all possible Ising configurations

G — Z{S} P 9o (80)
Z{s} P
p = Det[gT_l]Det[gil] (81)

The simplest QMC step is a spin flip of randomly chosen Ising spin. From analogy with the
classical Ising system it is clear that each configuration can be reached from any
configuration in finite number of steps (connectedness).

The acceptance probability will be handled by Metropolis algorithm

A({s} — {s}/) = min [i){ﬁilf]] ! 1}

Here we see the “fermionic minus sign” problem. If it happens that the above product of

determinants is negative, we can not use it as probability density. The problem is at present
unsolved. However, it turns out that for single impurity problem, determinants are always
positive. This was rigorously proved very recently.

For single spin flip, the ratio of distributions ,0’/,0 can be further simplified. It is clear from
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Eq. (67) that
Detlg'~']/Det[g™"] = DetA =1+ (1 — g,,) (X7 =) — 1)
and therefore
/o =11+ (1 =gh) (=) — D1+ (1 —gp,) (e =) —1)] (82)
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The algorithm for Hirsch-Fye simulation is

e Read input non-interacting Green’s function GV. Make a matrix of L x L out of G by
G°(ly,12) = G°(7;, — 71,). Be careful about antiperiodicity of
G(t + B) = —=G°(7).

e Choose starting Ising configuration (if ‘good” configuration is not known from some

previous run, start with completely random configuration)

e Calculate g with "clean update” from GV : g, = A7 G2 with
g o

o _ AO S| 0 AO S|
Alllg T 5l1l26 2 = Glllg (6 2 = 1)

e Repeat these steps until enough meassurements are collected (~ 10° L)

— Choose imaginary time slice p randomly and accept spin flip at p with transition
probability according to Metropolis (A(s — s’) = min|p’/p, 1]). We have

p/p =11+ (1—gl ) (e =) — D)1+ (1 - g} )(e =5 1))

— Calculate new ¢’ from g by
/ o a
= g7, +
Inis T q +a(l — g9,

It ) (90,p — Otip) 91,
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Use rank-1 update BLAS routine "dgerr”.

— If the number of accepted single spin flip steps exceeds certain number (~ 100),
make clean update again.

— If the distribution reaches equilibrium - number of all steps exceeds number of
warmup steps (~ 100L), start collecting meassurements.

— Save new measurement (of g) after correlation time has passed (~ 3L).
e Calculate averages and standart deviation of correlation functions (of &).

e Calculate G(7) out of L X L matrix G(l1,15).

Kristjan Haule, 2017 -38—



RUtgerS Computational Physics- 2017 QMC

Grouping of measurements into bins

The measurements in Markov chain are highly correlated. Even though measurements are
recorder only after few hundred spin-flips, the correlations between measurements are still

very large. As a results, the standard deviation calculated with the familiar formula
ot = ——((G%) - (&) 3
Ng—1
is orders of magnitude smaller than the actual sampling error. There is a simple way to
improve the estimate of the QMC error. The idea is to group large number of successive
measurements into one bin and than use the above formula for standard deviation of bins.
A good choice for bin size is N, ~ 1000 and one needs of the order of 100 bins to

estimate the error and covariant matrix.

To determin the best bin size one can monitor standard deviation as a function of V. It
turns out that it increases with increasing bin-size and saturates for large V. The optimal
N, can be choosen close to saturation of o2,
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Fourier transformation and analytic continuation

The input GV is usually in imaginary frequency 7w,, and one needs to make inverse Fourier
transform
G(t) = TZ G (iwp e "“nT.
tWn
The problem is that Green'’s function falls off as 1 /(iw,, ) and therefore the above sum
converges very badly. The usual trick is to subtract 1 /(iw,, ) term from GG and treat the tail
analytically. One therefore evaluates

1 : .
G(r)=T Gliw,) — —)e “»T +T —e T 84
(1) =T ) _(Gliwn) = =) +T) - (84)
1Wn, TWn,
We will show below that the second term is equal to —1/2. One can further simplify the

sum by realizing that the real part of G(z’wn) is even function of 1w,, and imaginary part is
odd. We have

1 -t~ (- 1 —1WnT 1
G(r) = g (G (iwn) +1|G" (twn) + w—n])e ~ 5 (85)
/(. /(- 1 . 1
— E 2|G' (iwy,) cosw, T + (G (twn) + w—) sinw, 7| — 5 (86)
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Here we want to show that

1 :
Ty —e nT = _1/2.
Tw Wn

We derive this as a special case of a standard contour integration in complex plane.

: W, T ﬁ f(_z)e_ZTg(Z)
/ \ T = $ S roeete -
k/: O<1T<p foo d“’f( w)e T g"(w + 10) 8
—B<T<0 — [0 “f(we “Tg"(w+id)

In special case of g(iw) = - we have g’ (w) = —7d(w) and the results is —1/2 for

7> 0and1/2for7 < 0.
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Usually, one needs Green’s function in imaginary (or real) frequency rather than imaginary
time. The Fourier transformation (analytic continuation) is required in this case. This is very
troublesome step and needs a lot of technical effort.

It amounts to solve

p
G(iw) :/ dre™ " G(T) (89)
0

G(t) = —/dwf(—w)e_“TA(w) (90)

The second equation connects G/(7) with the spectral function. It can be derived as a
special case of the above contour integral. Inserting for g Green’s function and taking into
account A(w) = —<G" (w) we arrive at (30). We need the inverse of the equation (90):
to obtain A(w) from G(7). This is very nontrivial since the kernel of the above integral
equation is highly sigular because it cutts-off high frequencies.

For Fourier transformation, the FFT is useless because Green’s function in w is not periodic
function but rather falls of as 1/w. The trouble is caused by high-frequencies again since

this information is not very well captured in noisy G(7).
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The simplest approach to Fourier transformation is by assuming linear interpolation of
G (7) between two successive imaginary time slices. The result is

1 1 G — G
G/(iwn) = — (sin(wn7l+1)Gl+1 — sin(w,71)G + ‘+1 : [cos(wnTi41) — cos(wnn)]) (91)
n Wn Ti4+1 — T
1 Giy1 — Gy

1
G”(iwn) = — (cos(wnTZ)Gl — cos(wnTi4+1)Gi+1 +

n

[sin(wnTi4+1) — sin(wnﬂ)]) (92)
Wn Ti41 — T

The problem of this approach is that frequencies larger than w > ﬁ are completely
wrong and one gets nonphysical oscilations with frequency ﬁ.

The standard approach is to spline G(T) by cubic spline function. Since than one knows
the function analytically (at least locally) one can compute Fourier transformation
analytically and arrives at somewhat more complicated but similar equation than Eq. (92).

The standard approach for analytic continuation is so-called Maximum Entropy Method.
The naive way to solve for A(w) in Eqg. (80) would be to minimize the distance between the
QMC measurements 7 and G/(7;) obatined from A with the help of equation (0)

X* =) (G(m) - Gi)? (93)

l

G(m) =— / dwf(—w)e “" A(w) (94)
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and minimization determines A(w). However, the problem is that the kernel in Eq. (90) is
singular and G(7) is completely insensitve to high-frequencies in A(w). Even worse is the
fact that QMC measurements have a lot of noise and this kind of minimization would overfit
QMC noise and the resulting A(w) would have weird unphysical oscilations.

The idea of Maximum entropy method is to add a damping term to x in order not to overfit
the QMC noisy data. The functional to be minimized is

CIA]l =) (G(m) = G)[C™ w(G(rr) — Gr) + aS[A] (95)
l
with S|A] being entropy like term which does not allow A(w) to be far from default model

m(w) (usually taken to be a constant)

S[4] = / Aol A(w) — m(w) — A(w)log Aw)/m(w) 96)

Here C' is the covariant matrix and appears because measurements are not statistically
independent, and « is parameter to be varied. In historical MEM, « is choosen to be equal
to number of real frequency points of A(w). More elaborated schemes are currently used
in literature. Seee M. Jarrell, and J. E. Gubernatis, 1996, Phys. Rep. 269, 133 (1996).
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Multiband models

The algorithm can be easily generalized to more complicated impurity with some more
degrees of freedom. As long as interaction is of the density-density type Unn, the
decouling is straighforward and the algorithm is free from minus-sign problem.

Below, the case of two bands is sketched.

The Hamiltonian for the SU(N) problem is

H = Z eqocoqcoq+ Z Unognog + Z VopcoqcqurVOpcpqcoq + Z epcpqcpq
974’ p>0q p>0,q
(97)

where ¢ runs over N spin-orbitals for SU (V') case. The special SU (2) case was
addressed above. In the two band case, the interaction term can be written in the form

. 1 1 1
H' = Ul(nlng — 5(7@1 + 77,2)) + Ug(nlng — 5(7”&1 + ng)) + Ug(nlnél — 5(”1 + 714))

1 1 1
—I—U4(n2n3 — 5(7@2 + n3)) + U5(n2n4 — 5(7@2 + 714)) + U6(n3n4 — 5(7@3 + 714))

There are Ny = N (N — 1)/2 interaction terms and each term needs one Ising spin. The
number of Ising spins is therefore LN ¢. The Hubbard-Stratonovich decoupling at each
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time slice in the two band case is

N 1
e ATH = 2_6 Z exp [)\181(7’1,1 — 7’L2) + )\282(7’1/1 — n3) -+ )\383(7@1 — 7’L4)

S1, »S6

+ Ags4(ng — n3) + Ass5(ne — ng) + Agse(ns — ny)
1 Aisifijn;
= o 3 oDy Nisif (100)

S1,""SNg

with 2 cosh \; = e=27Yi, N; = 6 and f;; a matrix

fij |1 2 4

1 1 -1 0

2 1 0o -1 0

3 1 0 0 —1 (101)
4 0 1 -1 0

5 0 1 0o -1

6 0 0 —1

For SU(N), all U; are equal to U. The Hirsch-Fye equations are almost unchanged from
SU(Z) case with the only important difference that the number of Ising spins over which
one needs to sample is increased from L to N L.
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Figure 1: The spectral functions of the DMFT solution for the Hubbard model on the Bethe
lattice. Last 10 DMFT iterations are plotted and the red curve shows the average specitral
functon, averaged over last 10 DMFT steps. The inset shows the imaginary axis self-energy

which is very smooth and precise.
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G(1)

Figure 2: QMC imaginary time Green’s function G(7) for few latest DMFT iterations. QMC
never converges to extremely high accuracy because of QMC noise (not perfect statistics).
And here one can see few latest iterations how they change in imaginary time and how
good the fit of 8 SVD-functions is. The symbols stand for QMC data and lines connect the

interpolation with those SVD functions.
Kristjan Haule, 2017
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Figure 3: Metal insulator transition within DMFT. Here 5 = 16 therefore the coexistance
region is not detected.
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— U=24p=32
05 — U=24p=32| —

04 .

Figure 4: This is a low temperature run with 3 = 32 and 128 time-slices showing the
coexistance of solutions at U = 2.4.
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Figure 5: This is an example of low temperature run where one has 128 time slices and if
one zooms in the central region, it is obvious that the oscilations of QMC data are pretty bad.
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