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1 Weiss Mean Field Theory for spin systems
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2 Mean Field Theory for Quantum systems (DMFT)
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3 Diagrammatic derivation of the Dynamical Mean Field

Theory

To understand the scaling of potential and kinetic energy in large dimensions, let’s consider

the Hubbard Hamiltonian,

H = −
∑

k,σ

εkc
†
kσckσ +

∑

i

Uni↑ni↓ (1)

although the conclusion is quite general. Potential energy is purely local, hence it is of the

order of unity per-site. The kinetic energy has to be of the same order of magnitude (for

meaningful model in large dimensions), hence 1
N

∑

k
εk has to be of the order of unity. In

the simplest cubic lattice we have

εk = −2t(cos(k1) + cos(k2) + cos(k3) + · · ·) (2)

For a generic k-point, the sign of cos terms is arbitrary and the sum of cos terms does not

become of the order of d for large d. It rather scales as the length of the random walk,

namely, as
√
d. For the kinetic energy to be of the order of unity, hopping matrix elements

has to scale as t ∝ 1/
√
d.
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The non-local Green’s function scales as Gij ∝ t|i−j|, where |i− j| is the distance

between the two points in Manhattan matrix. Hence the local Green’s function is of the

order of unity, the nearest neighbor Green’s function is of the order of 1/
√
d, the

next-nearest neighbor Green’s function is of the order of 1/d, etc.

Let’s consider the interacting problem on a lattice. For simplicity, we take only local

interaction U , which leads to a Hubbard-like action

Z =

∫

D[ψ†ψ]e
−

∑

iσ

∫

β

0

dτψ
†

iσ
( ∂

∂τ
−µ+H0

k
)ψiσ−

∑

iσσ′

∫

β

0

dτUiiiiψ
†

iσ
ψ

†

iσ′ψiσ′ψiσ (3)

and we consider all skeleton diagrams in the perturbation theory with respect to U . We

consider the perturbation theory with fully dressed propagators G, where only skeleton

diagrams enter. We obtain the following series
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+...

It turns out that all non-local contributions to the self-energy vanish at least as 1/
√
d in the

limit of large d. Consider for example the lowest order non-local contribution, the second

order diagram.
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Even for the nearest neighbors, the self-energy scales as 1/
√
d, and vanishes in the large

d limit.

The local self-energy in the infinite d limit contain only local propagators. For example, the

contribution to the local self-energy with non-local propagators vanishes at least as 1/
√
d:

Hence, in the infinite-d limit, the self-energy contains all possible skeleteon diagrams, and

the propagators are only the local propagators:
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+...

If the interaction is non-local, one can show that similarly all diagrams but the Hartree-Fock

(first order term in U ) become local in the large d limit, and those diagrams can be

computed from the local propagator only.

There are infinite number of diagrams even in the large d limit, and they can not be

evaluated order by order. In the Mott insulating state, even very high order diagrams

diverge, hence the perturbation series can not be truncated.

The trick is to find a quantum mechanical problem, which is (numerically) tractable, and in

its solution, becomes equivalent to our original infinite d lattice problem. It turns out that the
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equivalent problem is the quantum impurity problem.

Let’s consider the quantum impurity problem

Z =

∫

D[ψ†ψ]e
−

∑

iσ

∫

β

0

dτψ
†

iσ
(−G−1

0,imp
)ψiσ−

∑

iσσ′

∫

β

0

dτUiiiiψ
†

iσ
ψ

†

iσ′ψiσ′ψiσ (4)

The skeleton perturbation theory in interaction U leads to the following set of diagrams

+...

Since we expand in terms of fully dressed propagators Gimp (and consider only skeleton

diagrams), the propagator is

G−1
imp = G−1

0,imp − Σ (5)
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If we make sure that Gimp is the same as the local Green’s function Gii above, the

resulting impurity self-energy is obviously equal to our desired local self-energy of the

original lattice problem. If we have a method to solve the quantum impurity problem with

arbitrary propagator, we can obviously solve lattice problem in the infinite d limit.

We just explained the basic DMFT equation

ΣDMFT
ii = Σimp[Gimp ← Gii] (6)

In a translational invariant case, the DMFT self-consistency condition is

Gimp ≡
1

ω − Eimp − Σimp −∆
= Gii ≡

∑

k

1

ω + µ−H0
k
− Σii

(7)

and Σii = Σimp.

By definition, the hybridization ∆(ω) falls off at large frequency, and hence the impurity

levels can be obtained by the high frequency expansion of both sides of the equation:

1

ω
+
Eimp + Σ∞

ω2
+ · · · =

∑

k

1

ω
+
−µ+H0

k
+ Σ∞

ω2
+ · · · (8)

hence Eimp = −µ+
∑

k
H0

k
.
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4 General formulation

For a most general formulation of the DMFT problem, it is convenient to introduce the

concept of the Luttinger-Ward functional. The Luttinger-Ward functional Γ[G] is a functional

of the fully dressed Green’s function, and is extremized when G is the exact solution of the

problem. When Γ is evaluated on the exact G, it gives the free energy of the system.

The Luttinger-Ward functional takes the form

Γ[G] = Tr logG− Tr(ΣG) + Φ[G] (9)

where Φ[G] is the sum of all possible two particle irreducible skeleton diagrams obtained

by the bare Coulomb interaction U and fully dressed propagator G.

The variation of functional Γ with respect to G is

δΓ

δG
= δGG−1 − ΣδG− δGδΣ

δG
G+

δΦ[G]

δG
δG. (10)

Here G obeys the Dyson equation G−1 = G−1
0 − Σ, hence

δGG−2 = −δGδΣ
δG

(11)

Kristjan Haule, 2010 –11–



KH Computational Physics- 2010 QMC

since G0 is the non-interacting propagator and does not depend on Σ and does not vary

with G.

Inserting above, we obtain

δΓ

δG
= (−Σ +

δΦ[G]

δG
)δG (12)

which requires that

Σ =
δΦ[G]

δG
. (13)

Since the functional derivative of δΦ[G]/δG amounts to cutting a propagator in Φ in all

possible ways, the resulting self-energy is the sum of all possible skeleton graphs

constructed from the fully dressed green’s function G and bare interaction U . This is

clearly the exact self-energy of the problem.

The DMFT is an approximation to this exact Luttinger-Ward functional Γ[G].

The DMFT approximates the Φ[G] functional with the sum of all (skeleteon and two particle

irreducible) local diagrams rather then all diagrams. We therefore have

ΓDMFT [G] = Tr logG− Tr(ΣG) + Φ[Gii] (14)
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Self-energy is obviously

Σij = δi=j
δΦ[Gii]

δGii
, (15)

and can be computed from the corresponding impurity problem, which has a functional

Γimp[Gimp] = Tr logGimp − Tr(ΣimpGimp) + Φ[Gimp] (16)

and obeys the relation

Σimp =
δΦ[Gimp]

δGimp
(17)

If Gimp = Gii we have Σimp = Σii, and we were able to relate the DMFT self-energy to

the solution of the impurity problem.
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5 One band model

In the case of a one-band model, we can express the self-consistency condition in terms of

the density of states, i.e.,

1

ω − Eimp − Σ−∆
=

∫

dǫ
D(ǫ)

ω + µ− ǫ− Σ
(18)

hence only the density of states matters in the large dimensional limit (it turns out that

different lattices can have the same density of states in finite dimensions, the effect which is

clearly beyond DMFT).

Among all latices, the simplest DMFT equations turn out to be for the so-called Bethe

lattice, which is characterized by the semicircular density of states

D(ǫ) = −2/π
√

1− ǫ2 (19)

It is easy to obtain a close expression for the Hilbert transform of the Bethe lattice density of

states:

w(z) =

∫

dǫ
D(ǫ)

z − ǫ = 2(z −
√

z2 − 1) (20)
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The local green’s function on the Bethe lattice is thus equal to

G = 2(z −
√

z2 − 1) (21)

with z = ω + µ− Σ. The self-consistency condition becomes

2(z −
√

z2 − 1) =
1

ω + µ− Σ−∆
=

1

z −∆
(22)

and the expression for ∆ is

∆ =
1

4
2(z −

√

z2 − 1) (23)

or

∆ =
1

4
Gii (24)

and Eimp = −µ.

The phase diagram of the DMFT (here for the 2D-square lattice) is:
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Homework:

• Download the code from

http://www.physics.rutgers.edu/˜haule/681/src_CTQMC /

• Compile the source code in subdirectory src

• Check the script iterate.py in the run subdirectory. The script properly runs the

code creating necessary input files.

• Change parameters U and mu to sketch the phase diagram of the one band Hubbard

model in D →∞ limit. Since we are interested in the phase diagram of the half-filled

model, mu should be always equal to U/2.

– Verify that for U = 2.4 and mu = 1.2 and beta = 100 two different solutions are

possible (coexistance of solutions)

– Slowly increase U and check when the metallic solution disappears.

– Slowly decrease U and check when insulating solution dissapears.

– Sketch the region where the two solutions coexist.

– Increase temperature and find the coexistence region for few temperatures.
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